Technical University of KoSice

Faculty of Electrical Engineering and Informatics

Integrating Runtime Metadata with Source Code
to Facilitate Program Comprehension

Dissertation

2018 Ing. Matas Sulir

Technical University of KoSice

Faculty of Electrical Engineering and Informatics

Integrating Runtime Metadata with Source Code
to Facilitate Program Comprehension

Dissertation

Study program: Informatics

Field of study: Informatics

Department: Department of Computers and Informatics
Supervisor: doc. Ing. Jaroslav Porubén, PhD.

KoSice 2018 Ing. Matuas Sulir

Abstract

The general goal of this thesis is to provide suggestions for the facilitation of program com-
prehension and maintenance. We focus on approaches utilizing dynamic analysis, integrating
the data collected during program executions with source code.

Since a compilable software system is a prerequisite for many comprehension tasks, we
first describe a study of software build failures. Next, we provide a literature overview of
approaches labeling source code with various types of metadata, including data obtained from
running programs. In a controlled experiment, we found that the presence of a specific kind
of metadata, concern annotations, improves program comprehension correctness and time.
Although concern annotations are traditionally inserted into the source code manually, we
demonstrate and evaluate their semi-automated insertion. The problem of runtime metadata
persistence in the code is also discussed, suggesting suitable formats and workflows.

An important task during program comprehension is to find source code parts relevant
to a given element displayed in the user interface of a running program. In a small-scale
study, we found that many strings displayed in the running applications were not found it their
source code at all, or they had too many occurrences. Therefore, a static source code search
is often an insufficient strategy for this task. We designed RuntimeSearch — an approach to
runtime string searching. It searches the given text in all strings being evaluated in a running
program and pauses it when a match is found, offering standard debugging features available
in integrated development environments. The approach was validated using a controlled
experiment with human participants, showing a positive effect on maintenance efficiency.

We also present DynamiDoc, a documentation generator utilizing information from dy-
namic analysis. During program executions, it records the arguments, return values and object
changes. Then, it generates sentences containing examples of concrete values, describing
individual methods in the source code. We mention advantages and disadvantages of this
approach. In a preliminary quantitative evaluation, we found that the generated sentences are
succinct.

As an alternative to documentation generation, we present an interactive approach to
source code augmentation, RuntimeSamp. Collected sample values of variables are displayed
next to each source code line in the editor. We discuss several questions which should be
answered for this approach to be useful in practice. As a supplement, we provide a systematic
mapping study of visual augmentation of source code editors.

Keywords

program comprehension, software maintenance, dynamic analysis, text search, documentation,
integrated development environment

Abstrakt

Hlavnou témou tejto prace je poskytnit ndvrhy na ul’ahcenie pochopenia a idrzby programov.
Zameriavame sa na pristupy vyuZzivajice dynamicku analyzu, integrujice udaje zbierané
pocas vykondvania programov so zdrojovym kédom.

Ked’Ze kompilovatel'ny softvérovy systém je predpokladom pre mnoho dloh porozumenia,
najprv popisujeme $tidiu zlyhani zostavenia softvéru. Dalej poskytujeme literarny prehl’ad
pristupov znacenia zdrojového kédu roznymi typmi metadat, vratane dat ziskanych z beziacich
programov. Riadenym experimentom sme zistili, Ze pritomnost’ Specifického druhu metadat,
zamerovych anotécii, zlepSuje spravnost’ a ¢as porozumenia programom. Hoci zamerové
anotacie su tradi¢ne vkladané do zdrojového kédu rucne, demonStrujeme a vyhodnocujeme
ich poloautomatické vkladanie. Diskutuje sa tieZ o probléme uchovavania behovych metadat
v kdde, navrhujic vhodné formaty a pracovné postupy.

Ddlezitou tlohou pocas porozumenia programom je ndjst’ Casti zdrojového kédu rele-
vantné k danému elementu zobrazenému v pouZivatel’ skom rozhrani beziaceho programu. V
Stidii malého rozsahu sme zistili, Ze mnoho ret’azcov zobrazenych v beZiacich aplikaciach
nebolo vobec ndjdenych v ich zdrojovom kéde alebo mali prili§ vel’a vyskytov. Preto je stat-
ické vyhl'addvanie v zdrojovom kdéde Casto nedostato¢nou stratégiou pre tito tlohu. Navrhli
sme RuntimeSearch — pristup k behovému vyhl’addvaniu ret’azcov. Vyhl'addva dany text vo
vSetkych ret'azcoch vyhodnocovanych v beziacom programe a pozastavuje ho, ked’ je ndjdena
zhoda, poskytujic Standardné ladiace funkcionality dostupné v integrovanych vyvojovych
prostrediach. Pristup bol overeny pomocou riadeného experimentu s 'udskymi icastnikmi,
ukazujuic pozitivny efekt na i¢innost’ idrzby.

Predstavujeme tiez DynamiDoc, generator dokumentécie vyuzivajuici informdcie z dy-
namickej analyzy. PoCas vykondvani programu zaznamendva argumenty, ndvratové hodnoty
a zmeny objektov. Potom generuje vety obsahujtce priklady konkrétnych hodndt, popisu-
juce jednotlivé metddy v zdrojovom kdéde. Spominame vyhody a nevyhody tohto pristupu.
PredbeZnym kvantitativnym vyhodnotenim sme zistili, Ze generované vety st strucné.

Ako alternativu ku generovaniu dokumenticie predstavujeme interaktivny pristup k
rozSirovaniu zdrojového kédu, RuntimeSamp. Zozbierané vzorové hodnoty premennych st
zobrazené vedl’a kazdého riadku zdrojového kédu v editore. Diskutujeme tiez o viacerych
otdzkach, ktoré by mali byt zodpovedané, aby bol tento pristup uzitoény v praxi. Ako doplnok
pontkame systematicki mapovaciu Studiu vizudlneho rozSirovania editorov zdrojového kédu.

KPuacové slova

porozumenie programom, Udrzba softvéru, dynamickd analyza, textové vyhl’addvanie, doku-
menticia, integrované vyvojové prostredie

Declaration

I declare this thesis represents my own work end effort, all used information sources are ac-
knowledged. Some parts of the thesis are a result of collaboration. Each chapter encompassing
such material contains a footnote listing co-authors and their contributions.

KoSice, May 9,2018

Acknowledgement

I would like sincerely thank my advisor Jaroslav Porubin for his guidance throughout the
study and for the inspiration I received. My thanks goes also to my colleagues and family
which has always supported me.

Contents

1 Introduction 1
1.1 Program Comprehension 2
1.2 Source Code Labeling 2
1.3 Searching Concepts in Running Programs 3
1.4 Generating Documentation from Runtime Values 3
1.5 Augmenting Code Lines with Variable Values 4

2 Program Comprehension Overview 5
2.1 Research Field Definition 5
2.2 Theories and Research Methods 6
2.3 Techniquesand Tools 6

2.3.1 Overall Comprehension 7
2.3.2 Feature Location 7
2.3.3 Understanding the Details 8
2.3.4 Investigating the Rationale 9
2.3.5 Making Programs Comprehensible 9
24 Trendso e e 9
24.1 Techniques e 10
242 Systems . . . o. ... e e e 10
243 ResearchMethods 12
244 Conclusion 12

3 Buildability of Software Systems 13
3.1 Synopsis e 13
3.2 Build Failure Proportion 14

32.1 Method 14
322 Results 16
3.3 BuildError Types 17
33,1 Method 17
332 Results 18
333 ErrorTypes e 18
334 ErrorCategoriesl 20
3.4 Relation of Build Results to Project Properties 20
341 Method 20

342 Results 21

CONTENTS

3.5 Discussion e e 22
3.6 Threatsto Validity L 22
3.7 RelatedWork 23
3.8 Conclusion e 24
39 FutureWork e 24
4 Labeling Source Code with Metadata 25
4.1 Method e 26
4.1.1 Search Strategy 26

4.1.2 InclusionCriteria i 27

4.1.3 Final Article List 27

414 DataExtraction 28

42 Taxonomy e e e e e e e e 28
421 SoUurce e 28

422 Target e e e 29

423 Presentation 29

424 Persistence e 30

43 ApproachesandTools 31
43.1 Human 31

432 Code. e 32

433 Runtime 32

434 Interaction e e 33

435 Collaboration 33

43.6 Mixed Approaches 33

44 Threatsto Validity 34
4.5 RelatedWork 34
4.5.1 Other Labeling Forms 34

4.5.2 LocationReferencing 34

4.5.3 Related Research Fields 34

454 Terminology 35

4.6 Conclusion 35
5 Manual and Runtime-Based Concern Annotation 37
5.1 The Effect of Annotations on Program Maintenance 38
5.1.1 Hypotheses 39

5.1.2 Variables 39

5.1.3 ExperimentDesign 40

5.14 Procedure 41

5.1.5 Resultso 42

5.1.6 Threatsto Validity 45

5.1.7 Conclusion e 46

5.2 Replication of the Controlled Experiment 47
52.1 Method 47

522 Results 47

523 Threatsto Validity 48

524 Conclusion 48

5.3 Automation of Concern Annotation 49
5.3.1 Creating Annotation Types 50

5.3.2 Differential Code Coverage 50

Contents

5.3.3 Writing Annotations Lo 51
5.4 Comparing Manual and Automated Annotation 51
54.1 Method 52
542 Results 53
5.4.3 Threatsto Validity, 53
5.5 RelatedWork 54
5.5.1 Concerns 54
5.52 Annotations e 54
5.5.3 Differential Code Coverage 55
5.54 Feature Mapping 55
5.6 Conclusion e 55
Persisting Runtime Metadata 57
6.1 Format e 58
6.1.1 Annotation-Based Metadata 58
6.1.2 Comment-Based Metadata 60
6.2 Workflow 61
6.2.1 Local-Only Workflow 61
6.2.2 Shared Workflow oo 62
6.2.3 Workflow Selection 62
6.3 Limitations e e e 62
6.3.1 Inputofthe Analysis 62
6.3.2 AutomaticReloading 62
6.3.3 Presentation Limitations 63
6.3.4 Applicability to Other Languages 63
6.4 RelatedWork 64
6.4.1 Code Annotation 64
6.4.2 Runtime Information 64
6.43 IDEExtensions 64
6.4.4 Workspace Sharing L. 64
6.5 Conclusion 65
Location of GUI Concepts in Source Code 67
7.1 Method 68
7.1.1 GUIScraping o e 68
7.1.2 Analysis e 68
7.2 Quantitative Results 69
7.2.1 Occurrence Counts i 69
722 FileTypes o e 70
7.3 Qualitative Results 70
7.3.1 Strings Not PresentinCode 71
7.3.2 Strings PresentinCode 71
7.4 Threatsto Validity 71
7.4.1 Construct Validity 72
7.4.2 External Validity o 72
743 Reliability 72
7.5 RelatedWork 72
7.5.1 GUIRipping 72

7.5.2 Feature Location Using GUIs 72

CONTENTS

7.5.3 Feature Locationin General
7.54 Other Studies
7.6 Conclusion e
8 Searching in Runtime Values
8.1 Runtime-Searching Approach
1.1 User'sView i
8.1.2 Principle.
8.1.3 Implementation Details
82 CaseStudy. e
8.2.1 Finding an Initial Point
8.2.2 Searching for Occurrences
8.2.3 The Fabricated Text Technique
824 Non-GUIStrings
8.2.5 Hypothesis Confirmation
83 Performance
8.4 Quantitative Evaluation
84.1 Method
842 Results
8.4.3 Threatsto Validity
844 Conclusion
85 RelatedWork
85.1 Searching
8.5.2 Debugging
8.5.3 ConceptLocation,
8.6 Conclusion and Future Work
9 Generating Documentation from Runtime Information
9.1 Documentation Approach Lo
9.1.1 Tracing e
9.1.2 Selection of Examples
9.1.3 Documentation Generation
9.2 Qualitative Evaluation
9.2.1 UtlityMethods
90.2.2 DataStructures e
9.2.3 Changing Target Object State
9.2.4 Changing Argument State
9.2.5 Operations Affecting External World
9.2.6 Methods Doing TooMuch
9.2.77 Example Selection
9.3 Quantitative Evaluation
9.3.1 DocumentationLength
9.3.2 Overridden String Representation in Documentation
9.4 Related Work
9.4.1 Static Analysis and Repository Mining
9.4.2 Dynamic Analysis L
9.5 Conclusion and Future Work oL

10 Visual Source Code Augmentation

75
76
76
77
78
78
78
79
79
79
80
81
81
81
82
84
85
85
85
85
86
87

89
90
91
92
92
94
94
95
95
96
96
96
96
97
97
99
100
100
101
102

105

Contents

10.1 Definition and History, 106
10.1.1 Definition e 106

10.1.2 Historical View e 106

10.2 Method e 107
10.2.1 Research Questions 107

10.2.2 Selection Criteria e 107

10.2.3 Search Strategy 107

10.2.4 Data Extraction e 109

10.2.5 Threatsto Validity 109

103 TaXonomy oo e e e 110
103.1 Source e e 110

10.3.2 Type . . . o o o e e 112

10.3.3 Visualization 113

10.3.4 Location 114

1035 Target o 115

10.3.6 Interaction e e 116

103.7 IDE e 117

10.4 ApproachesandTools 117
10.5 Conclusion 117

11 Augmenting Code Lines with Runtime Values 121
11.1 Object Representation 122
11.2 Recording Moment Selection 123
11.3 Iteration Selection e 124
11.4 Iteration Detection v i i i 125
11.5 Collection Efficiency 125
11.6 Filtering of Variables, 126
11.7 Data Invalidation 127
11.8 Conclusion e e 127

12 Conclusion 129
12.1 Summary 129
12.2 Contributions e e 131
12.3 Future Work 131
Bibliography 133
Selected Author’s Publications 153
Important Conferences 153
Current Contents Journals 153
OtherJournals e 154

Other Conferences o i i i e s 154

List of Figures

2.1
22
2.3
2.4
2.5
2.6

3.1
3.2
33
3.4
3.5
3.6

5.1
5.2
5.3

7.1

8.1
8.2
8.3

9.1
9.2

10.1
10.2
10.3
10.4
10.5

Program comprehension in the context of a software development process . . . 6
Static vs. dynamic analysiso 10
Feature location vs. visualization 11
Program slicing, code clone detection 11
Studied systems — legacy vs. open source 11
Types of research in program comprehension 12
Build study overview 14
Recognized build tools L o 17
Build success vs. failure L Lo 17
Build error categories 20
Build status for individual build toolso, 21
Beanplots (distributions+medians) of project characteristics 21
Results of the controlled experiment 44
Results of the experiment replication 49
An annotation process for a specificconcern L. 50
Occurrence counts of strings/words divided by file types 70
A possible example of RuntimeSeach utilization 77
RuntimeSearchinaction 80
Efficiency of tasks for a group using RuntimeSearch vs. standard IDE features . 84
Length of a documentation sentence 98
Relative documentation sentence length 99
A preview of selected augmentation features in an industrial IDE 106
The systematic survey search process and article selection overview 108
Tools with various visualizationkinds, 114
Tools with various locationkinds 115
DrScheme — a tool utilizing the popover interaction 116

Sample values augmentation in RuntimeSamp 122

List of Tables

3.1
3.2
33
34

4.1
4.2

5.1
5.2
5.3

6.1

7.1
7.2
7.3

8.1

9.1
9.2

10.1
10.2
10.3

11.1

Studied build systems 15
The most frequent Maven errortypes 19
The most frequent Gradle error types 19
The most frequent Ant error typeso 19
Source code labeling taxonomy 28
Labeling approachesand tools, 31
Experiment results for individual subjects 43
Detailed results of experiment replication 48
Features and theiroverlaps L. 53
File-reloading capability of selected IDEs and texteditors 63
The applicationsusedinthestudy 68
The occurrence counts of whole strings from GUIs in the source code 69
The occurrence counts of individual words from GUIs in the sourcecode 69
Detailed results of the RuntimeSearch experiment 83
A decision table for the documentation sentence templates 93
Overridden/default string representations 100
The taxonomy of source code editor augmentation 111
Augmentationtools 118
Augmentation tools (continued) L. 119

Time overhead of instrumentedruns 127

List of Abbreviations

API
DBMS
DL
DSL
CI

FO
GUI
GPL
HTML
HTTP
IDE
JAR
Java ME
JDK
JNI
JSON
kLOC
LOC
PDF
POM
REST
Ul
UML
URL
VCS
XML

application programming interface
database management system
digital library

domain specific language
continuous integration
formatting objects

graphical user interface
general-purpose language
Hypertext Markup Language
Hypertext Transfer Protocol
integrated development environment
Java ARchive

Java Micro Edition

Java Development Kit

Java Native Interface
JavaScript Object Notation
thousands of lines of code

lines of code

Portable Document Format
Project Object Model
REpresentational State Transfer
user interface

Unified Modeling Language
Uniform Resource Locator
version control system
eXtensible Markup Language

Chapter 1

Introduction

Maintenance of existing computer program systems typically counts for about 60% of software
development cost [78]. Before a part of a system can be changed, it must be comprehended
[195]. Nowadays, software projects are built using large frameworks. Systems have an
immense number of dependencies and their behavior often depends on results of asynchronous
calls to remote servers. They consist of multiple layers and having a web or mobile interface
becomes a standard. Project teams are large and dispersed over the world [238], which
hinders traditional communication about intents in the source code. Without proper tool
support, understanding of software systems may soon become an unattainable task. Therefore,
this work aims to improve understanding of existing programs by developers, i.e., program
comprehension.

A programming language should serve as a mean of communication between a human and
a computer. A valid source code of a program, by definition, contains all required information
to be unambiguously compiled and executed on a computer. On the other hand, the source
code is often understood by humans with great difficulties, or not at all. This can be attributed
to a lack of information useful for humans contained in the code. Many approaches aim
to fill this gap by assigning additional metadata to source code elements. These metadata
can come from diverse sources: from manually entered comments, through documentation
generated by static analysis, to harvested instant messages. They can be of various types —
from numeric values to texts and images — and presented in even more various ways. They can
be permanently persisted in the source code or a database, or shown only for a split second in
the integrated development environment (IDE).

A particularly interesting kind of metadata are data obtained by dynamic analysis, i.e.,
runtime metadata. During the execution of a program, inherently abstract source code becomes
concrete. Individual runtime states and their transitions offer the developer exemplified views
of the program.

Our ultimate goal is to improve program understanding efficiency, particularly by integrat-
ing the run-time information with the source code. In this thesis, we offer a few approaches
trying to at least partially fulfill this ambitious goal. Along with them, we provide motivational
empirical studies, evaluations and literature reviews about related topics.

In this chapter, we provide an overview of the dissertation. We briefly describe the
discussed topics and list hypotheses and research questions which are elaborated in the next
chapters. Additionally, we note the used research methods.

1. INTRODUCTION

1.1 Program Comprehension

In chapter 2, we first provide a general overview of program comprehension theories, ap-
proaches and tools in the form of an ad hoc literature review. Then we outline rising and
falling trends in program comprehension over the timeline of 15 years. We asked the research
question:

* RQ2.1: What are the rising and falling trends in program comprehension?

An automated technique of trend analysis on titles, abstract and keywords of scientific papers
was used.

During multiple experiments, we recognized the importance of the software build process.
Many open source projects fail to be built from source code, which, besides being a practical
problem, hinders program comprehension research. A successful build result is a prerequisite
for almost all comprehension activities, including the assignment of dynamic analysis data
to parts of source code. Although there exists limited evidence about build failures (e.g., by
Neitsch et al. [175] or Seo et al. [224]), the studies are rarely large-scale and suffer from
low external validity. To quantify the severity of the build failure problem, we tried to fully
automatically build about 7,000 Java projects. In chapter 3, we ask the following research
questions:

* RQ3.1 What portion of projects fails to build?

* RQ3.2 What types of build errors do occur most frequently?

* RQ3.3 Is there an association between the build success/failure and other project’s

properties (e.g., the used build tool, age)?
To answer the first two questions, we use quantitative methods. Statistical hypothesis testing
is used for the third question.

1.2 Source Code Labeling

Since understanding a program only by looking at its source code is difficult, many approaches
label parts of the code with various metadata. They include human-written descriptions
of methods, information obtained from static and dynamic analysis, IDE interaction data,
information from version control systems and other communication artifacts. These metadata
are then presented to the programmer by appropriate tools. We conducted a partially systematic
mapping study with the aim of taxonomy construction in this broad research area. We
combined manual searching of selected years from relevant conferences and journals, keyword
search and references search, and a personal bibliography. The main purpose was to show the
variety of the research area. The following questions were asked in chapter 4:

* RQ4.1: What approaches (and tools implementing them) do exist to label parts of
source code with additional metadata and present them to a programmer in order to
improve program comprehension?

* RQ4.2: How can these approaches be categorized?

Concern annotations represent a specific kind of source code labeling. They are human-
written Java annotations describing the intentions behind a particular class or method. Using
a controlled experiment with human participants, we tested the following hypothesis in
chapter 5:

» HS.1: The presence of concern annotations in the code improves program comprehen-

sion and maintenance correctness, time and confidence.
To further support our hypothesis, we also performed an experiment replication, now on
industrial developers instead of students.

2

1.3. Searching Concepts in Running Programs

Manual insertion and updating of concern annotations in the source code are tedious. Thus
we designed a runtime-based, semi-automated approach of concern annotation. This method
uses an existing dynamic analysis approach (software reconnaissance [278]) to extract sets
of methods pertaining to the given feature. Then we build upon the work which compares
the overlap of multiple independent human annotators of the same code [181] by asking the
research question:

* RQS5.1: How does the overlap between semi-automatic and code author’s annotations

compare to the overlap among annotations of multiple non-authors?

The previously mentioned approach can be extended to any runtime metadata, not only
concern annotations. In chapter 6, we describe a method which assigns information obtained
from dynamic analysis to source code elements — e.g., a set of dynamic method callers or
code coverage results. Thus we ask the question:

* RQ6.1: How can runtime metadata be persisted directly in source code files?

We discuss what formats are suitable for metadata persisted in source files and how such an
approach fits into an existing software development workflow.

1.3 Searching Concepts in Running Programs

Programmers often interact with the UI (user interface) of a running program, putting them-
selves in the role of end users. They create mappings of UI elements to the source code in
their minds [209]. However, anecdotal evidence says us that not every textual label displayed
in the GUI (graphical user interface) can be easily found in the source code. Therefore, we
decided to quantitatively examine the relationship between the terms occurring in the static
source code and the labels displayed in the GUI of a running program. The GUISs of four open
source Java applications were automatically traversed, producing a list of strings and words
contained in these strings. In chapter 7, we ask three research questions:

* RQ7.1: What portion of strings and words displayed in the GUIs of running desktop

Java applications are located in their static source code too?

* RQ7.2: Mainly in what types of files are these terms located?

* RQ7.3: If some strings are not located in the source code, what are common reasons?

This study presents a motivation for the approach we designed — RuntimeSearch. It allows
a developer to find run-time values in a manner similar to traditional, static source code search.
After entering the searched string, the program is run, while comparing all evaluated string
expressions at runtime with the given text. When a match is found, the program is paused
and a traditional debugger is open, with all standard operations available. This is useful as a
lightweight form of feature location or to confirm hypotheses during debugging. In chapter 8,
we had two research questions and one hypothesis regarding our new approach:

* RQ8.1: What are possible use cases of RuntimeSearch?

* RQ8.2: What is the performance overhead of searching strings in the runtime?

* HB8.1: RuntimeSearch improves the efficiency of search-focused maintenance tasks.
They were answered using performance evaluation, a case study, and a controlled experiment,
respectively.

1.4 Generating Documentation from Runtime Values

There exist multiple approaches which label the source code by automatically generated
documentation [174]. However, they traditionally process the static source code of a program

3

1. INTRODUCTION

and associated collaboration artifacts. Our new approach — DynamiDoc, described in chapter 9,
generates documentation sentences for methods using information from dynamic analysis.
For each method, string representations of concrete arguments, return values and object states
before and after the method execution are recorded. Then, sentences utilizing sample values
are generated. For example, for a list reversal, the sentence can look like: “When called
on [1.5, 2], the object changed to [2, 1.5].” We perform both a qualitative and preliminary
quantitative evaluation:

* RQ9.1: What are the strengths and weaknesses of DynamiDoc?

* RQ9.2: What is a typical length of documentation sentences generated by DynamiDoc?

* RQ9.3: What portion of objects contained in the generated sentences has a custom

string representation?

1.5 Augmenting Code Lines with Variable Values

Instead of inserting metadata into source code files, it is also possible to develop an interactive
approach in the form of an IDE plugin. In recent years, we noted the advance of visual
enhancements of source code editors. The IDEs for textual languages are no longer purely
textual — they display graphs, charts, texts and other information directly next to the related
code. We would like to use this fact with advantage and design an IDE augmentation approach
using dynamic analysis.

First, we performed a systematic mapping study about visual augmentation of source code
editors in general. In chapter 10, the following questions are answered:

* RQ10.1: What source code editor augmentation tools are described in the literature?

* RQ10.2: How can they be categorized?

Finally, in chapter 11, we describe RuntimeSamp — our technique of visual source code
augmentation using runtime information, namely the values of variables. First, a few values
of each variable are recorded during program execution. Next, at the end of each line, the
sample values are displayed thanks to an IDE plugin. The approach has a similar base idea as
DynamiDoc — to help the programmer by presenting concrete examples of values; however,
this time they are assigned to each line instead of the method as a whole. The following
research questions were asked:

* RQ11.1: How to present complicated objects succinctly on a small space?

* RQ11.2: When exactly should we capture the values of variables?

* RQ11.3: How to decide which iteration to display?

* RQ11.4: How to define an iteration in a way which is easy to detect and present?

* RQ11.5: How to collect enough data for sample values presentation while keeping the

overhead reasonable?

* RQ11.6: Which variable values should be displayed and which not?

* RQ11.7: When and how to invalidate the collected variable values?

Since RuntimeSamp is a preliminary approach, we answered some of these questions only
naively, leaving space for further research.

Chapter 2

Program Comprehension Overview

In this chapter!, we will provide a brief general overview of the research field of program
comprehension — its theories, methods, selected techniques and trends.

2.1 Research Field Definition

According to Biggerstaff et al. [25], a person comprehends a program if one understands
its structure, behavior and connection to the application domain. We can say that program
comprehension describes how developers understand existing programs (whether or not
written by themselves) in order to improve their functional or non-functional qualities.

To delineate the research field, let us put program comprehension in the context of a
software development process (Fig. 2.1). As a developer reads the specification, a mental
model forms in his or her head. A mental model is defined as a representation of a program in
the programmer’s mind [239]. This model is refined until the developer is able to implement
parts of the application and create manually produced artifacts — traditionally the source
code. The code is compiled, producing generated artifacts like a runnable application. To
comprehend the program, the developer inspects the source code and debugs the produced ap-
plication. This further refines the mental model and the development continues. Occasionally,
the specification must be adapted because not all requirements were implemented in a desired
way.

It is important to note that the order of the mentioned processes is not fixed and they often
interleave or are performed in parallel. In many cases the programmer starts to familiarize
with the program by inspecting generated artifacts — the running application. Finally, the
diagram depicts only one specific developer’s perspective and does not consider team aspects
of software engineering.

Two most related research fields are software maintenance and reverse engineering.
Maintenance is a broader term which encompasses practically a whole software development
process since it is difficult to distinguish between software creation and software modification.

The terms program comprehension and reverse engineering are often used interchangeably,
although there is a slight difference. Reverse engineering focuses on techniques and tools for

I'This chapter contains material from our articles: [244], [249]. The copyright symbols next to some figures
and tables do not represent our opinion — they are a requirement of the publisher.

2. PROGRAM COMPREHENSION OVERVIEW

’ specification ‘

‘ A
|
design : adapt
| !
’ mental model ‘
| A A
implement : : comprehend : comprehend
| |
V | |
manually produced| 9€neraté | ganerated
artifacts artifacts

Figure 2.1: Program comprehension in the context of a software development process. Dashed arrows represent
manual, human-performed processes; solid arrows are automatic, computer-performed operations. The research
area of program comprehension is marked in boldface.

creation of higher-level abstraction documents from lower-level ones. Program comprehension
research is also interested in the effect of using these tools. Therefore, reverse engineering
techniques aid developers in program comprehension [168].

2.2 Theories and Research Methods

A cognitive model, also called a comprehension model, is a theory describing psychological
processes involved in program comprehension which help to construct the mental model of a
program [239]. There are multiple cognitive models described by researchers. Generally, we
can divide them into top-down and bottom-up approaches.

Top-down program comprehension starts with the programmer’s problem domain knowl-
edge. The person forms hypotheses about the program and accepts or rejects them by
inspecting the source code and other artifacts. The hypotheses are gradually refined into
sub-hypotheses [35]. This type of comprehension is typically used when the program is
familiar [274]. An example of a top-down cognitive model is the Brooks model [35].

Bottom-up comprehension is characterized by reading the source code line by line and
incrementally grouping them to form higher-level abstractions [239]. An example is the
Pennington model [188].

The fact that there are at least seven, relatively complex comprehension models described
in literature (six in a review [274] and one recent [22]) suggests us an idea that this number is
not finite. Each person’s cognition is quite different and it depends on a specific situation. It is
therefore difficult to generalize the theories and design useful program comprehension tools
directly after them. For this reason, empirical studies are very common in the field of program
comprehension. For an example of a controlled experiment in program comprehension, see
section 5.1.

2.3 Techniques and Tools
We will now explore the process of program comprehension from the most high-level perspec-

tive to detailed inspection, providing an overview of relevant techniques and tools available,
along with problems developers encounter.

6

2.3. Techniques and Tools

2.3.1 Overall Comprehension

Architecture comprehension tools visualize the overall structure of a software system, its
components and their relationship. Polymetric view tools like CodeCrawler [128] display
code entities as nodes, relations between them as edges and arbitrary metrics as node shape
attributes. For example, classes are displayed as rectangles with the width proportional to
the method count and the height proportional to the line count. A disadvantage of such tools
is the fact they usually focus just on simple quantitative metrics and perform only a static
analysis of source code.

Metaphor-based visualizations transform code entities to 2D or 3D objects known from
real life. For example, the famous city metaphor displays classes as buildings — like in
the EvoSpaces tool [2]. An industrial application of such visualizations is questionable. A
more promising approach is offered by ExplorViz [72], which combines them with so-called
landscape view — a mixture of UML deployment and activity diagram produced by analyzing
execution traces.

Domain analysis tools can be helpful for a new team member to become familiar with
the system. The DEAL method [15] extracts a domain model from the GUI (graphical user
interface) of a running application. However, manual user interaction is necessary and the
method focuses only on a static structure of programs like relations between forms and their
controls.

To gain the overview of domain knowledge contained in a program, it is possible to map
program identifiers to an ontological dictionary like WordNet using subgraph homomorphism
[199]. However, the approach is only semi-automatic and it is necessary to adjust the results
manually. This is a result of representational defects like polysemy where one identifier in a
program can represent multiple real-world concepts. Some types of defects can be detected
and repaired, but the other are inherent to the nature of relationship between programs written
in current general-purpose languages (GPLs) and the real world [200].

2.3.2 Feature Location

As software becomes more complicated, it is impossible for a programmer to understand it
whole. Therefore partial, or as-needed comprehension is necessary [196].

Each software consists of problem concepts and features (like a shopping cart or shipping
method selection) and solution features (e.g., a web presentation and database persistence).
One problem domain feature is scattered across multiple solution features. This is called
feature delocalization [82]. One of the key objectives of program comprehension is to tackle
this phenomenon which impedes code navigation by using feature location (or concept
location) tools.

Textual code search is a common feature location approach. To find syntactical patterns,
programmers often use complicated regular expressions and the results are unsatisfactory as
programming languages are rarely regular. An AST (abstract syntax tree) querying is more
viable. By using an intuitive “query-by-example” language [186], developers can search an
AST without realizing it. However, the approach is not usable for more complicated patterns.

The MuTT tool [143] implements feature location by execution trace collection. While
debugging the program, just before utilizing the feature of interest like adding an item to the
shopping cart, the programmer clicks a button in the tool to start collecting the trace. After
performing the desired action, the button is clicked again. A list of all methods executed
between the two clicks is displayed in an IDE (integrated development editor). It must
be manually filtered since it probably contains many auxiliary methods, not related to the

7

2. PROGRAM COMPREHENSION OVERVIEW

tracked feature. Furthermore, to find multiple features, it is necessary to manually repeat the
mentioned actions for each of them. The possibility of automation should be investigated.

After the features are located, it is desirable to mark their occurrences in the source code
to avoid duplicate work in the future. This activity is called code labeling or concern tagging.
In the previous example, we would mark all found methods with a tag “add to cart”. An
academic tool FLAT? [221] combines: full-text code search, feature location by execution
trace collection using the MuTT tool, feature labeling with method-level granularity, and
visualization of feature distribution across the source code files.

An another approach for feature location is differential code coverage [226]. If we run
a program first selecting a feature of interest and then not, the difference of code coverage
should be the source code of the feature. This approach suffers from similar limitations as
execution trace collection.

It would be useful to combine execution trace collection of the MuTT tool with differential
code coverage and assess the effectiveness of such approach. Furthermore, as bugs can be
considered a kind of features (unwanted, of course), bug localization is a specific kind of
feature localization. Differential code coverage could be used to localize the faults, too.

An interesting feature location tool is included directly in the core of an industrial IDE,
NetBeans. During the runtime, it is possible to take so-called GUI Snapshot of the debugged
program user interface and inspect the events to be performed after e.g., clicking a button or
selecting a combo-box item.

2.3.3 Understanding the Details

The Theseus tool [140] shows how many times a particular method has been called during a
web application execution. These numbers are displayed directly in the code editor and in real
time. By clicking a given method, a retroactive log containing the argument values for each
execution is shown. This allows for feature location along with a more thorough inspection
of the program behavior. A similar tool [153], but for desktop Java applications, operates
on individual source code lines instead of methods and thus focuses on detailed algorithm
analysis.

Many difficult comprehension questions developers ask when debugging can be answered
by asking reachability questions. A reachability question involves searching for all possible
execution paths to find source code statements matching the given criteria [129]. However,
developers’ questions are often vague and difficult to formulate in mathematical terms. The
overhead used to formulate such queries can exceed the benefits they provide.

As developers inspect the source code and associated artifacts using various techniques,
they create mental models of the code which contain information far behind what is explicitly
written. Despite there is a high demand for this implicit knowledge [147], it is not explicitly
captured [130] or it is captured only in transient notes, not persisted across sessions [147].
One possible cause is that each developer’s mental model is different and thus the personal
notes created by one developer are not useful for an another one. This hypothesis should be
tested by further research.

One form of temporary knowledge saving is the use of bookmarks in an IDE. To share
such personal findings, collective bookmarks [85] can be used. In the study, they were found
useful for marking the lines where to start with a given type of task, but not for detailed
explanations.

8

2.4. Trends

2.3.4 Investigating the Rationale

Even if the code is thoroughly understood, programmers often ask why it was implemented
this way [130]. One of the manually produced artifacts in Fig. 2.1 are version control system
commits. Commit messages may contain invaluable information about intentions behind the
source code.

Surprisingly, less developers actually read commit messages than write them [147]. A
possible cause is that IDEs do not present them conveniently. Plugins like Deep Intellisense
or Rationalizer [31] try to overcome this issue by displaying history information relevant to a
given piece of code.

For version control analysis tools to be successful, each commit must contain code related
to only one task. This is often not true in reality. A technique [115] can detect tangled changes
before they are committed and suggest how they could be untangled. The disadvantage is a
high ratio of false positives.

2.3.5 Making Programs Comprehensible

While analyzing existing software is useful, we must also learn lessons from it and design
new systems to be more comprehensible.

Identifier naming is a significant factor of program comprehension. Method names can be
evaluated for comprehensibility and more intuitive names can be suggested, using a database
of commonly used n-grams [261].

Instead of using feature location approaches with often unsatisfactory results, there is
a possibility to label classes and methods by their associated concerns using source code
annotations immediately when writing the code. Then, source code projections [193] can
be used to show classes and methods associated with a given concern in an IDE. While
projections are perceived as useful, labeling the code manually is a time-consuming activity
which does not directly affect the resulting program execution. Therefore, we can expect
programmers to skip labeling or leave the annotations out of sync with the rest of the code,
just as it often happens with comments.

Much work is done in the area of code clone detection and removal since there is a
widespread opinion that duplicated code negatively affects comprehension. Surprisingly, a
study [194] found out that fixing bugs affecting cloned code do not require more effort than
fixing other bugs. Code with high regularity, which may be a result of cloning, is more easily
comprehended by developers [102]. Furthermore, developers perceive code duplication in
a broader sense than simple copy-pasting — for example, implementing the same method in
multiple languages or in multiple version control branches [130].

2.4 Trends

It is beneficial for researchers not only to find out which approaches exist in the area, but also
to gain insight about their popularity over time. Therefore, we ask the following research
question:

RQ2.1 What are the rising and falling trends in program comprehension?

To analyze the development of trends in the research area of program comprehension, we
decided to perform an automated trend analysis on the metadata of research articles published
between the years 2000 and 2014 (inclusive).

2. PROGRAM COMPREHENSION OVERVIEW

— dynamic analysis
---- static analysis

0.4 %
|

0.3 %
1

frequency
0.2%
!

0.1 %

0%
|

2000 2002 2004 2006 2008 2010 2012 2014
year

Figure 2.2: Static vs. dynamic analysis. © 2015 IEEE

We searched the citation databases Scopus?, IEEE Xplore® and HCI Bibliography* for the
following exact terms:

* program comprehension,

* program understanding,

* code comprehension.
Titles, abstracts and author-supplied keywords of 1885 articles were analyzed using a tech-
nique called n-grams [163]. For each year, a frequency of every phrase among all phrases
of the given length was determined. For a detailed description of the method, see our article
[249].

2.4.1 Techniques

Static program analysis (e.g., [122]) deals with the source code of an application without
running it, whereas dynamic analysis [47] utilizes runtime information. As seen in Fig. 2.2,
in 2004, the dynamic program analysis overtook the static one and this state lasts until today.

We can see a plot of two often used program comprehension techniques — feature location
and visualization — in Fig. 2.3. While visualization is relatively steady, feature location rises
rapidly from 2004.

Program slicing [284] is a technique used to find all code semantically related to the
given statement or variable and produce a new program, containing only this related code. In
Fig. 2.4, we can see a decreasing popularity of slicing.

Code clone detection [214] is a research field with a long tradition. However, from Fig. 2.4
it is obvious that it started to associate with program comprehension only in recent years.

2.4.2 Systems

In Fig. 2.5, we can see what types of systems the researchers study. Legacy systems have a
clearly decreasing tendency during the last 15 years. One trend which immediately caught
our attention is an extremely rapid increase of the n-gram “open source” between the years
2003 and 2009.

Zhttp://www.scopus.com
3http://ieeexplore.ieee.org
“http://hcibib.org/ICPC14

10

| — feature location+concept location+concern location |
---- visualization+visualisation+visualize

0.6 %
|

frequency
0.4 %
|

0.2%
|

0%

T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014
year

Figure 2.3: Feature location vs. visualization. © 2015 IEEE

— slicing+slice+slices
---- clone+clones

1%

frequency
0.6 %
!

0.2%
|

0%
|

2000 2002 2004 2006 2008 2010 2012 2014
year

Figure 2.4: Program slicing, code clone detection. © 2015 IEEE

— legacy systems+legacy system+legacy software
---- open source]

0.3 %
|

0.2 %
|

frequency

0.1 %

0%

T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2014
year

Figure 2.5: Studied systems — legacy vs. open source. © 2015 IEEE

11

2. PROGRAM COMPREHENSION OVERVIEW

— case study
---- experiment
X /S N | review-+survey
o
o
XV /N /T
3o
c
> o
2
> 4
Q N
TR \
o ; \ N T
/l \ FORN //'/
_ / \ e A~ v S -
// \\ /v/ 7 ‘_\ // -\V‘// ~
* B A - \\./'/
e T T T T T T T T

2000 2002 2004 2006 2008 2010 2012 2014
year

Figure 2.6: Types of research in program comprehension. © 2015 IEEE

2.4.3 Research Methods

We can see in Fig. 2.6 that case studies have a slightly decreasing tendency. There is a sudden
rise of experiments in 2011, when they even outperformed case studies. Naturally, reviews
and surveys are the least common types as they summarize existing research results.

2.4.4 Conclusion

We analyzed the trending phrases in bibliographies to see the rising and falling ones. The
most rising trends are feature (and concept) location and the study of open source systems.
Program slicing and the study of legacy systems are the most falling trends.

12

Chapter 3

Buildability of Software Systems

Being able to build a software system from its source code is a prerequisite for almost all
comprehension activities. In the cases when we aim to label parts of source code with
metadata using runtime information, this requirements is especially important: It is necessary
to have both a runnable software system and its source code, while this runnable system was
produced exactly from the version of the source code we possess. Consider the following
three situations:

* A researcher wants to use an open source system in his next program comprehension
experiment. He downloads the software project of interest in a form of a source code
archive, opens it in an IDE (integrated development environment) and tries to build it.

* A student is willing to contribute to her favorite open source program with a new feature.
She pulls the source from the project’s version control system. Before starting the actual
work, she checks whether the project can be built using a command-line interface of
the build system.

* A practitioner is trying to fix a bug in a third-party library their company extensively
uses. Again, the necessary precondition is to make sure the library builds.

All three situations have something in common: The message “Build failed” is likely to
appear. Instead of doing useful work, the developers start to inspect cryptic error messages,
search them on the internet, modify project configuration files, manually install packages
and configure paths. This can take hours to fix — or, at worst, the developer gives up. Such
situations significantly hinder the program comprehension efforts of developers.

3.1 Synopsis

In the broadest sense, the purpose of a build system is to generate output data given a set of
inputs [230]. Considering a more specific, typical scenario, a build system reads a buildfile —
e.g., a Maven POM (Project Object Model) file. Using the supplied information, it downloads
necessary third-party components. Next, it executes a compiler to produce binary files from
textual source code. Finally, it packages the program in a format suitable for deployment.
As tools like Make have existed since the 70’s [69], build systems are often perceived
as a solved problem by researchers [175]. Nevertheless, developers often encounter build
problems which negatively affect their work [112]. While there exists anecdotal evidence that

13

3. BUILDABILITY OF SOFTWARE SYSTEMS

’ Java projects at Github (~2,000,000) ‘

v

’ random projects matching the criteria (10,000) ‘

v

’ projects with a recognized build-file (7,264) ‘
| RQ3.1

v

] build success (4,494) \] build failure (2,764) \] timeout (6) \

RQ3.3 ¢RQ&2
’ error types (292) ‘
’ association study ‘ ¢R03.2

’ error categories (12) ‘

Figure 3.1: Build study overview

open source systems are sometimes difficult to build [175], large-scale studies on a substantial
number of projects are rare. In this chapter', we aim to provide empirical evidence that
build system invocations of many open source projects fail. Furthermore, we will look at the
reasons of failures and factors affecting them.

A software system should be buildable from source in one step [232]. In the Java
ecosystem, we expect an invocation of a build system like Maven, Gradle, or Ant to represent
this step.

We strive to simulate a simple programming environment of a Java developer, download a
large number of open source Java projects from the software forge GitHub, fully automatically
execute the build command for each of them, and observe the build process outcomes.

We formulate our research questions as follows:

RQ3.1 What portion of projects fails to build?

RQ3.2 What types of build errors do occur most frequently?

RQ3.3 Is there an association between the build success/failure and other project’s
properties (e.g., the used build tool, age)?

For a high-level overview, see Figure 3.1. In section 3.2, we answer RQ3.1 by a simulation
study. Using the collected data, a semi-automated classification of failed builds (RQ3.2) is
presented in section 3.3. An association study is also performed on the data (RQ3.3), which
is described in section 3.4.

3.2 Build Failure Proportion
In this section, we answer the first research question.

3.2.1 Method

The data collection process consisted of two steps: obtaining a list of suitable projects, and
the building process itself. The whole process was fully automated, controlled by a script.

I'The content of this chapter was published in our article [251].

14

3.2. Build Failure Proportion

Table 3.1: The studied build systems (auxiliary log-formatting arguments were omitted)

Tool File name Build command

Gradle build.gradle gradle clean assemble
Maven pom.xml mvn clean package -DskipTests
Ant build.xml ant clean; ant jar || ant war || ant dist || ant

Project Selection

From a set of all public repositories at a large software forge, GitHub, we selected a random
sample of projects corresponding to the following inclusion criteria:

* projects written in Java,

* not using JNI (Java Native Interface), Android or Java Micro Edition (ME) APIs,

* having an open source license,

* and forked at least once.

Now we will describe the rationale behind the criteria and details of the process.

In this study, we focused only on projects written in the Java language. Java seems like an
ideal choice, since it is a compiled language and it offers very feature-rich build systems. To
determine the project’s main language, the GitHub API?> was used. There were approximately
2,000,000 Java projects on GitHub at the time the study was conducted (see Figure 3.1).

We were interested only in open source projects. To assess whether a particular project is
open-source, we utilized the information supplied by the GitHub API. GitHub produces these
data by matching the contents of “License” files with a set of well-known licenses. Around
20% of GitHub repositories contain a recognized license.>

Only repositories with at least one fork were included. First, this indicates that there is
some interest in cooperation on a project. Second, this criterion lowered the number of results
by a factor of 10 to keep the number of searched repositories reasonable.*

We requested the GitHub API with a combination of queries corresponding to the above
criteria. From the list of returned repositories, a random sample was selected. The most recent
version (the current “master” branch) of each project was downloaded in a form of a tarball.
The total number of downloaded archives was 14,567.

After extraction of the archives, the presence of JNI, Android and Java ME APIs was
tested using file name and content patterns. The reason for exclusion of projects using these
APIs was to maximize internal validity. Thanks to JNI, Java source code could call methods
written in other languages, while we were interested in pure Java. We would be no longer
testing just Java build systems, but also other toolchains outside the Java ecosystem, which
also applies to Android and Java ME.

The resulting set of random projects, corresponding to the inclusion criteria, consists of
10,000 projects.

Build Process

For each of the 10,000 projects, a primary build tool was recognized by the script. In our
study, we focused on three popular build systems: Gradle, Maven and Ant. To assess which

Zhttp://developer.github.com/v3/

3http://github.com/blog/1964-open-source-license-usage-on-github-com

“The GitHub API does not support random selection of repositories, so we needed to retrieve metadata for
all projects matching the criteria and sample them locally.

15

http://developer.github.com/v3/
http://github.com/blog/1964-open-source-license-usage-on-github-com

3. BUILDABILITY OF SOFTWARE SYSTEMS

build system a particular project uses, the presence of a build-file was checked in the project’s
root folder. For a list of file names, see Table 3.1, column “File name”. In case multiple
build-files are found in the root directory, Gradle takes precedence over Maven, and Maven
has higher priority than Ant. The ordering is based on an assumption that newer systems are
used as a primary build tool, while preserving the legacy ones for compatibility.

If a project contained build-file(s) only in non-root directories, or did not include a
build-file at all, we excluded it from further processing. This leaves us with 7,264 projects.

The builds were executed using the lightweight virtualization platform Docker”. The goal
was to simulate a simple yet functional software environment of a Java programmer. The
Docker image (available at http://quay.io/sulir/builds) contained the following software:

¢ the Linux distribution Fedora,

* Java SE Development Kit (JDK) 8,

e Gradle, Maven and Ant build tools,

* the dependency manager Ivy,

* the version control system Git,

* a Ruby interpreter (to execute the control script),

* and the “tar” and “unzip” utilities.

The control script executed the build process for each project sequentially. For every
project, an appropriate build command was run, corresponding to the project’s build tool —
see Table 3.1, column “Build command”. Their general goal is to produce a runnable Java
archive from source files. The underlying idea is that a developer should be able to execute
the corresponding command on any project using the given build tool, without reading and
following any complicated instructions or modifying the project’s files, and the build output
should be generated successfully. In cases when the build tool enables exclusion of tests
via command-line arguments, we utilized it, since the output archive can be generated and
software can be often successfully executed even if tests fail.

During each build process execution, both standard and error output streams of a build
process were redirected to a log file. The exit code of the process was recorded: a non-zero
exit code signifies failure (or timeout). The execution time of one build was limited to one
hour. This was necessary since we encountered infinite builds during pilot runs. The project
data — exit codes and auxiliary metrics like the number of files in source archives — were
stored in a CSV (comma-separated values) file for further analysis.

3.2.2 Results

In total, 72.64% of 10,000 projects have a recognized buildfile in its root directory. The most
popular tool is Maven — see Figure 3.2.

Among other findings, 8.54% of projects contained such buildfile in a non-root directory.
Since Ant does not provide dependency resolution capabilities itself, we were interested in
how many projects using it also utilize the dependency manager Ivy. The number is relatively
low: 10.18%.

In Figure 3.3, we see that 38.05% of builds failed. This means in almost 4 of 10 cases,
the programmer would not be able to produce a target archive from the source code without
manual intervention.

A negligible part of builds did not meet the time requirement. Some of the reasons are
lengthy dependency resolution and downloading, and expecting user input.

Shttp://www.docker.com

16

http://quay.io/sulir/builds
http://www.docker.com

3.3. Build Error Types

Gradle (11.13%)

Maven (53.26%) Ant (8.25%)

no/undetected (27.36%)

Figure 3.2: Recognized build tools

failure (38.05%)
timeout (0.08%)

success (61.87%)

Figure 3.3: Build success vs. failure

3.3 Build Error Types

In this section, we will analyze the reasons of the mentioned failures.

3.3.1 Method

To determine the kind of failure, the logs were searched for the presence of certain patterns.
Since each build tool has its own log format, first we associated a buildtool-dependent,
machine-readable error type with each log (e.g., “MojoFailure:maven-compiler-plugin”). This
process was automated. Second, a significant portion of error types was manually grouped
into tool-independent, human-readable categories (e.g, “Java compilation™).

Maven

A failing build is caused by a thrown Java exception, which is present in the log. Therefore,
we decided to use exception class names as a Maven error types, with the “Exception” suffix
removed for brevity.

However, the exception can be chained. For example, a LifecycleExecutionException
can be caused by a CompilationFailureException, which can be caused by another one,
etc. Fortunately, Maven logs contain a URL of a web page describing the relevant exception.
We extracted the exception class name from this URL. In cases when multiple URLs were
present, we extracted the class name from the last URL since it usually contained the most
specific exception.

Some exception class types, e.g. MojoExecutionException, are too vague. In such cases,
we searched for a presence of the pattern “Failed to execute goal...” and extracted the Maven
plugin name which caused the failure, for instance, maven-javadoc-plugin. We then labeled
the project with an error type in the form of “ExceptionClass:plugin-name” (see Table 3.2 for
examples).

17

3. BUILDABILITY OF SOFTWARE SYSTEMS

Gradle

For Gradle, the thrown exception class was considered too. Since Gradle does not include a
URL in its logs like Maven, we analyzed the printed Java exception ourselves. The situation
was more complicated because Gradle sometimes utilizes multi-cause exceptions, when one
exception is caused by more than one other exceptions, forming “exception trees”. Assigning
multiple error types to one build would unnecessarily complicate further analysis. Therefore,
after a manual inspection of a subset of Gradle logs, we decided to use the following method
to find the most relevant exception: If it was a simple (unchained) exception, it was selected.
Otherwise, the first most direct cause of the root exception was selected. For example, in the
exception tree “A caused by B and C (caused by D)”, we selected the exception B.

Two exception classes were too vague, so we enriched the error type with the name of the
failed task in these cases. Finally, for the PluginApplicationException, the failing plugin
name was appended.

Ant

Since Ant throws the same exception (BuildException) for all possible build failure reasons,
it is useless for error classification. However, Ant prints names of individual targets as it
executes them. Therefore, we were able to extract the last executed target — i.e., the failing
one. The error type is in the form “Target:target-name” in this case. If the build failed before
even one target was started, we analyzed the log for a presence of frequently occurring natural
language patterns, determined by a manual inspection of the remaining logs.

Categorization of Error Types

In total, there were 292 different error types. Our goal was to categorize them, using human-
readable names. Since this process was performed manually and the number of error types
was large, we decided to categorize only more frequently occurring error types. While just 84
error types were categorized, they represented more than 86.5% of build failures.

The categorization was performed by one of the authors. He discussed the documentation,
inspected sample logs, and searched web forums to seek help with the categorization. When
he was unsure, he left the error type uncategorized.

3.3.2 Results

First, we will present error types for individual build tools. Next, a overview of error categories
will be presented.

3.3.3 Error Types

The most frequently occurring Maven error types are displayed in Table 3.2. A very large
portion of Maven builds ends with the “DependencyResolution” error. This includes temporary
and permanent network problems of the servers hosting the dependencies, authorization errors,
missing files on servers due to reasons like discontinued dependency hosting or removed older
versions, invalid POM files, and many others.

For the most frequent Gradle error types, see Table 3.3. At the top, there is a “Compila-
tionFailed” error which includes traditional Java compilation errors like undefined symbols,
missing packages, incompatible types, etc.

Table 3.4 displays Ant error types. The most frequently failing target is “compile”.

18

Table 3.2: The most frequent Maven error types

Error type Yo
DependencyResolution 39.11
MojoFailure:maven-compiler-plugin 18.16
UnresolvableModel 10.59
MojoExecution:maven-javadoc-plugin 8.17
ProjectBuilding 2.47
PluginResolution 2.41
MojoExecution:git-commit-id-plugin 1.70
PluginManager 1.65
MojoExecution:maven-antrun-plugin 1.37
MojoExecution:exec-maven-plugin 1.10
MojoExecution:maven-enforcer-plugin ~ 1.04
AetherClassNotFound 0.77

Table 3.3: The most frequent Gradle error types

Error type %
CompilationFailed 22.36
MissingProperty 11.59
PluginApplication:ShadowJavaPlugin ~ 7.66
Gradle:javadoc 5.59
InvalidUserData 5.18
Module VersionNotFound 3.93
Exec 3.52
ModuleVersionResolve 3.52
Resolve 2.69
Illegal Argument 2.48
CustomMessageMissingMethod 2.07
MultipleCompilationErrors 1.86

Table 3.4: The most frequent Ant error types

Error type Yo
Target:compile 21.83
CannotImport 17.03
Target:-do-compile 12.23
Target:build 3.28
Target:build-project 2.84
unknown 2.84
Target:compile-import-shared ~ 2.62
Target:-init-check 1.75
Target:jar 1.75
MissingPath 1.53
Target:-do-init 1.53
TaskdefNotFound 1.31

19

3. BUILDABILITY OF SOFTWARE SYSTEMS

dependencies 39.2%

Java compilation 22.1%
documentation generation 6.4%
configuration 4.7%

file not found 3.7%

external program execution 2.4%
version control integration 1.9%
packaging 1.8%

other build tool integration 1.6%
buildfile parsing/compilation 1.2%
wrong JDK version 0.8%
non-Java compilation 0.7%

T T 1
20 30 40
Failure by category [%)]

o :EDDDDDDDD_ _

—_
o

Figure 3.4: Build error categories

3.3.4 Error Categories

Error categories combined for all build tools are shown in Figure 3.4. Notably the largest
portion of builds are dependency-related (39.2%). This is caused by Maven builds to a
large degree — more than a half of failed Maven builds end with various dependency-related
exceptions.

Compilation of Java source code caused 22.1% of failures. Note that some compilation
failures might be a consequence of missing dependencies [224].

Surprisingly, 6.4% of failures occurred during documentation generation. Some builds
failed because of missing or invalid configuration properties (4.7%) and missing files or
directories (3.7%).

3.4 Relation of Build Results to Project Properties

We hypothesize there is some form of association between the build result of a project and
its properties. Specifically, we consider the project’s build tool, size, popularity, age and last
update recency.

The hypotheses are formulated as follows:

H3.1 The probability that a build fails depends on the build tool which the project uses.

H3.2 Builds of larger projects fail more likely than that of smaller ones. Project size was
measured by a file count, as suggested by Mclntosh et al. [157].

H3.3 Failing project are less popular, in terms of “stars” received on GitHub.

H3.4 Older projects, considering creation dates, fail more likely.

H3.5 More recently updated projects have a higher probability of a passing build.

3.4.1 Method

The build status is a nominal variable with two possible values: “pass” and “fail”. The build
tool is a nominal variable, while all other project properties are numeric (interval).

To be usable in statistical tests, dates must be converted to numeric values. We decided to
use relative measures for readability reasons. Project age was measured as a number of days

20

3.4. Relation of Build Results to Project Properties

Maven | O
Gl’ad|e | sSuccess

At [| B e
T T T 1
0% 25% 50% 75% 100%

Figure 3.5: Build status for individual build tools

file count stars age [days] last update [days]
o
o_|
To]
3
o S
2 oy S
S S
S w_| B S
™ - — —
o 3
S e ST
[a\} - ~—
o
S
Te]
o o
= o] 3
o o o o —
T I I
passed vs. failed passed vs. failed passed vs. failed passed vs. failed

Figure 3.6: Beanplots (distributions+medians) of project characteristics

between the creation date of a particular project and of the newest project. A similar measure
was used for recency — using the “last updated” dates.

To determine whether the dependence of the build status and build tool is statistically
significant, we used the Pearson’s chi-squared test. To assess the dependence of build status

and all other properties, a two-sided Mann-Whithey U test was performed. A confidence level
of 99% was used (p-value should be < 0.01).

3.4.2 Results

The chart of projects’ build status for each build tool is in Figure 3.5. Maven builds tend to
be the most successful (65.8%), while Ant fails the most often (44.4% success rate). The
differences are statistically significant (p-value < 0.0001), confirming H3.1. Cramér’s V is
0.146, which means small to medium effect size.

In Figure 3.6, there are four beanplots depicting distributions and medians (horizontal
lines) of file count, star count, age and update recency for projects with passed (left side)
vs. failed (right side) builds. Outliers were trimmed from the display, but preserved in
calculations.

Projects with a successful build had a median of 70 source files, while this number was
101 for the failing ones (a 44% difference). This is natural — larger projects are usually more
complex and thus more error-prone. The result is statistically significant, with a p-value of
less than 0.0001, so H3.2 is accepted.

21

3. BUILDABILITY OF SOFTWARE SYSTEMS

There is a difference in the number of “stars” for the two groups — a median of 3 vs. 2.
The difference is not statistically significant (p = 0.0226).

When considering dates of creation (H3.4), there is ~17% difference of age between
passing (median ~722 days) and failing (841 days) builds. For a date of last update (H3.5),
the situation is similar, but the difference is more striking: 174 vs. 312, i.e, a difference of
79%. Both results are statistically significant (p < 0.0001). A possible explanation is that
build scripts require maintenance — even if the project is untouched — to deal with changes in
build tools themselves. After inspecting the results for individual build tools, Maven builds
showed the largest difference.

Note that this is only an association study — it does not mean that simply selecting Maven
will make your project less prone to build failures. There may be complex relationships
among multiple factors. For example, Ant projects tend to be older and slightly larger than
other.

3.5 Discussion

Some portion of the failed projects could be buildable if we manually read the README file
and followed the instructions provided. We argue that automated builds are not fully automated
if they require a programmer to manually download dependencies, edit configuration files or
perform other steps.

Nevertheless, we tried to manually download and build 3 random failing projects, using
instructions provided in the README files (if present). If errors occurred anyway, we tried
to correct them.

The first build failed even after we followed the instructions. It was successfully build
only after we downgraded Gradle — the build system itself — from version 2.14 to 2.10. This
shows that some projects require specific older versions of tools. An interesting fact is that
the project was last updated less than a year before the study execution, so the “project rot”
can occur quite fast.

The second project, with a name ending with “-core”, failed because of a missing JAR file.
This file could be produced by manually downloading and building a related “-utils” project.
In README, there was only a brief mention that the project depends on the “utils” package.
It is questionable why automated dependency management was not used, since both projects
were using Maven, which has a built-in support for this.

The third project did not mention any building instructions in its README. Its build
failed because a “snapshot” version of a third-party dependency was used. This version was
probably available in the Maven repository in the past, but now it is not. After we corrected
the version to a final one in the Maven POM file, a compilation error “package does not exist”
occurred because of another missing dependency, unrelated to the previous one. Although we
were trying to edit the POM file to download this dependency, builds were always failing with
various download errors. We even tried downloading necessary JARs manually, but without
success.

3.6 Threats to Validity

First, our results are valid only for the presented project selection criteria. Further studies
should extend the criteria, particularly to include Android applications/libraries, which are
becoming increasingly popular. Furthermore, about 80% of GitHub repositories do not

22

3.7. Related Work

contain a license file® — including them could affect the results. Since analyzing GitHub alone
has its disadvantages [106], we could also explore software forges other than GitHub.

The project’s primary programming language was determined using the GitHub API,
which uses a mapping of file extensions to languages, and returns a language in which the
most bytes are written. This means the projects could utilize also other languages. However,
we consider the presence of a Java build script in the project root directory a sign that the
project (or its Java part) is buildable using Java tools. Furthermore, we excluded projects
using JNI (although exclusion patterns for Android and JNI might not be faultless). Finally,
only 2.4% of failures were caused by external program execution, and even only some portion
of them were because of an absence of a specific tool.

The selection of tools in our virtual environment might not represent a typical developer’s
setup. Nevertheless, they represent a minimal toolchain to download further tools and libraries
as dependencies if necessary.

For Gradle and Maven, tests were excluded from the build process. For Ant, there is no
command-line switch available for test exclusion, so they could potentially run. Our goal was
that a single, universal command should be executed, which should just produce an output
archive, without performing other activities like testing and deployment. The ad-hoc nature
of Ant makes it difficult, so we resorted to the nearest behavior possible — similar to what a
real developer could do without modifying build scripts. Overall, less than 0.4% of failures
are test-related, which makes this threat negligible.

Some build tools cache downloaded dependencies. Our script does not clean the cache
directories between individual builds. While this could in theory decrease internal validity,
external validity is strengthened — the programmer does not clean them often either.

Not all error types were categorized, so there may exist other categories, and the actual
percentages of existing ones can slightly differ. However, 86.5% of failed builds correspond
to categorized error types. A similar approach was used by Seo et al. [224] — they covered
about 90% of their dataset.

Since Ant target names are generally free-form, they might not be the best categorization
criterion. Using a custom logger, like in [156], we could extract task names to obtain more
precise results.

Although categorization of error types was performed manually and solely by one re-
searcher, this study is fully replicable and the analytical part is fully reproducible. The
Docker image, scripts for analysis, and other materials are available at http://sulir.github.io/
build-study.

3.7 Related Work

In this section, we will review some works related to build systems, with a focus on failure
analysis.

Kerzazi et al. [112] found that 18% of automated builds of an industrial web application
failed during a period of 6 months. In an exploratory study by Neitsch et al. [175], 4 of the 5
selected multilanguage Ubuntu packages could not be built or rebuilt without intervention.
While these studies thoroughly investigated a small number of systems, our study takes a
quantitative approach: it encompassed over 7,000 various projects.

A study [224] conducted at Google showed that 30% of developers’ Java builds executed
on a centralized build server failed. In contrast to our study, they used own proprietary

Shttp://github.com/blog/1964-open-source-license-usage-on-github-com

23

http://sulir.github.io/build-study
http://sulir.github.io/build-study
http://github.com/blog/1964-open-source-license-usage-on-github-com

3. BUILDABILITY OF SOFTWARE SYSTEMS

build system, analyzed only compiler messages instead of full build system logs, and studied
multiple builds of the same systems over time.

According to Beller et al. [21], 59% of broken builds on a continuous integration server
Travis CI were caused by a test failure. Our study complements these results by examining
failure reasons other than unsuccessful tests.

Vasilescu et al. [272] described association of various project characteristics with the
success of their build. They analyzed existing builds on a continuous integration server, while
we created a virtual environment simulating a developer’s local system.

Mclntosh et al. [157] performed a study of build systems on a large number of projects.
Some of their findings are consistent with ours — for example, that Maven requires the largest
build maintenance effort. They were not interested in build successes and failures, though.

Among other characteristics, Mclntosh et al. [156] studied the build-time length of open
source projects. However, success/failure rates and failure reasons were not presented.

In a study by Hochstein and Jiao [92], 11% of regression test failures were due to failed
builds. They investigated only one project, though.

3.8 Conclusion

In a virtual environment containing programming tools, we tried to automatically build more
than 7,000 Java projects from GitHub, corresponding to the selection criteria. Answering
RQ3.1, more than 38% of these projects failed to build. Regarding RQ3.2, the most frequent
errors were dependency-related, followed by Java compilation and documentation generation.
To answer RQ3.3, the likelihood of a build failure is associated with the build tool used; we
also found that larger, older and less recently updated projects fail more.

Regarding the methodology, we presented an example of a simulation study in software
engineering. In real life, we observed interesting behavior on a small number of projects.
In a virtual environment, we tried to simulate the behavior which would be performed by
programmers (i.e., building the projects) on a large sample and observed the outcomes.

While we did not study closed-source industrial systems themselves, they are also affected
by this study since they often incorporate open source libraries in various ways.

3.9 Future Work

Especially for novices, error messages are often unreadable [151]. By determining what
build error messages are the most common, we can focus on making them more programmer-
friendly. For example, we can break a frequently occurring generic message into multiple
specific ones.

External dependency management causes both maintenance effort [157] and build failures.
Creating a system automatically generating and updating a build configuration by analyzing
libraries in the source code would be useful.

Although we manifested the severity of build failures, we did not provide much guid-
ance how to avoid them. It would be very useful to create a list of recommendations for
programmers and build maintainers.

Researchers are welcome to perform further empirical studies using our images and
scripts (http://sulir.github.io/build-study). Extending the scope to C, C++ and other languages,
performing a longitudinal study — analyzing the history of successful and broken builds over
time, or measuring build/rebuild time are only a few interesting future research directions.

24

http://sulir.github.io/build-study

Chapter 4

Labeling Source Code with Metadata

Often a developer needs to understand the program when looking at its source code, but the
critical information he seeks is not present in the code. Consider the following examples.

A small, but tricky piece of code worked a few days ago, but now it does not. The
programmer must open a web browser, navigate to the version control system (VCS) website
and find the relevant commit. It refers to the issue tracking system, which is a separate
website. After reading the whole, particularly long issue description and a multitude of related
comments, he finally finds the reason of the malfunction.

Another programmer tries to comprehend a rather complicated algorithm. It is difficult
to understand it just by looking at the code, so she decides to provide sample input data and
debug the program using a built-in debugger of an IDE (Integrated Development Environment).
While it is possible to display a value of any variable at any time, the debugger does not
present any overview of values of a particular variable over time. Each time a program stops,
the programmer must remember a value of interest and compare it with previous values in
mind. As the capacity of short-term memory is very limited, the developer soon starts writing
notes in a separate document. This in turn creates a burden of switching between two separate
views (a split-attention effect [20]).

These two — at the first glance unrelated — scenarios have something in common: The
information a developer needed was available sometimes or somewhere. But it was not
available in the right place at the right time: in the IDE, and associated with the particular
piece of code the developer was looking at.

Many researchers have realized this problem and provided various approaches, methods
and tools to partially solve some of its aspects. However, as the research in this area is not
very mature, authors use a rather large variety of terms to describe them. For this reason, we
decide to provide an overview of existing approaches.

In this chapter!, we will provide a preliminary systematic mapping study of selected
existing approaches to label parts of source code with additional metadata with the purpose of
program comprehension improvement. The sample of articles is categorized by four criteria,
which form a taxonomy.

Our general research questions for this survey are:

RQ4.1 What approaches (and tools implementing them) do exist to label parts of source

The content of this chapter was published in our article [254].

25

4. LABELING SOURCE CODE WITH METADATA

code with additional metadata and present them to a programmer in order to improve program
comprehension?
RQ4.2 How can these approaches be categorized?

4.1 Method

We decided to conduct a systematic mapping study, which is a form of a systematic literature
review (SLR). In contrast to an SLR, a mapping study has more general research questions
[190] and the main goal is to classify research to categories, rather than provide precise
quantitative results [117].

4.1.1 Search Strategy

Since our view of literature through a notion of “source code labeling” is not very common
and the terminology is inconsistent, we decided to try multiple different search strategies and
combine their results.

Manual Search

First, we performed a manual search among all articles published in 8 journals and 4 confer-
ences, selected by the authors’ discretion (partially inspired by a list in [228]). In this first
part of the search process, arbitrary two years (2009 and 2012 in our case) were selected, as
suggested by [286]. The journals of interest were:

* IEEE Transactions on Software Engineering (TSE),

* ACM Transactions on Software Engineering and Methodology (TOSEM),

* Computer Languages, Systems and Structures (COMLAN)),

* Science of Computer Programming (SCP),

* Journal of Systems and Software (JSS),

* Empirical Software Engineering (ESE),

* Information and Software Technology (IST),

* Journal of Software: Evolution and Process (JSEP), formerly known as Journal of

Software Maintenance and Evolution (JSME),

and conferences:

* International Conference on Software Engineering (ICSE),

* International Conference on Program Comprehension (ICPC),

* Working Conference on Reverse Engineering (WCRE)

* and International Conference on Software Maintenance (ICSM).

A Scopus? query was constructed based on the criteria, the results list was exported as a
CSV file and inspected in a spreadsheet processing program. A total of 1546 articles were
manually assessed based on titles and abstracts, resulting in a list of 16 relevant articles.

Keyword Search

Continuing the methodology of Zhang et al. [286], we inspected the terminology used in
articles obtained during the manual search and based on it, we constructed and tried multiple
keyword-based search queries. The final Scopus query is as follows:

Zhttp://www.scopus.com

26

4.1. Method

TITLE-ABS-KEY(

("source code” OR "program comprehension")

AND ("tagging” OR "enriching” OR "augmenting"” OR "labeling")
) AND SUBJAREA(COMP)
AND NOT SUBJAREA(bioc OR medi OR envi OR neur)

Basically, it searches the specified terms in titles, abstracts and keywords of computer
science literature, excluding interdisciplinary research. The search yielded 85 results, of
which 6 were newly found relevant ones.

The methodology by Zhang et al. [286] prescribes trying slightly different queries until
one of them returns at least 80% of articles from the first (manual) phase. For the query
presented above, this number was far below 20%. Broadening the terms caused the count of
results to skyrocket. The number of false positives was high, without a significant positive
impact on the relevant result count. For this reason, we decided to leave the methodology and
continue with other techniques.

References Search

We searched for all forward and backward references of 22 articles collected so far. Again,
we used Scopus.

Backward references mean all articles cited in the “References” section of particular
papers. They are generally older than the article citing them. From 305 results, we considered
14 unique and relevant.

Forward references are articles for which a search engine knows they cite a particular
paper. This is useful to find newer articles. Of 137 results, 3 were relevant and not yet found
in previous searches.

Other Sources

Five more relevant articles were found recursively in the references of articles found during
the phase of references search. Finally, we added three more papers present in the authors’
personal bibliography.

4.1.2 Inclusion Criteria

During the selection process, a paper was considered relevant if:

* it presented a new approach or tool to associate metadata with pieces of source code,

* the purpose of these metadata was to improve program comprehension

* and a form of presentation of these data to a programmer was described.
Examples of excluded articles are papers describing a labeling algorithm without discussing
how to present results to developers, and purely empirical studies comparing existing ap-
proaches.

4.1.3 Final Article List

From the 47 selected articles, 17 were just descriptions of the same or similar idea in another
research phase. Five were considered irrelevant after skimming or reading the full text.

The final article list thus contains 25 articles. For an overview, see Table 4.2. Further
details will be provided in section 4.3.

27

4. LABELING SOURCE CODE WITH METADATA

Table 4.1: Source code labeling taxonomy

Dimension Attribute Description
Source human Manually entered information, previously present only in hu-
man mind.
code Results of static source code analysis.
runtime Results of the program execution; dynamic program analysis.
interaction Interaction patterns of a single developer in the IDE.
collaboration ~ Collaboration artifacts of multiple developers like VCS com-
mits or e-mails.
Target folder A directory or a package.
file A file or a class.
multi-line A multi-line part of a file, e.g., a method.
line One line in a file, such as a variable declaration.
line part A character range, e.g., a method call.
Presentation code view The editable source code view is augmented with metadata.
existing view Other existing views in an IDE (e.g., a package explorer) are
augmented.
separate view A separate view is created just to present the information of
interest.
Persistence internal The metadata is stored directly in the source code file (e.g.,
using a comment).
external A separate file, database or server is used to store the labels.
none/unknown The metadata are only presented to the user, but not stored; or

a method of persistence was not mentioned in the article.

4.1.4 Data Extraction

The full text of 25 relevant articles was read, carefully watching for similar and distinguishing
signs regarding source code labeling. Succinct notes about each article were written in a
tabular form, gradually forming a taxonomy.

4.2 Taxonomy

First, we will introduce our taxonomy, answering RQ4.2. Similar to Dit et al. [59], articles
(approaches) were evaluated according to multiple criteria, called dimensions. For each
dimension, an article can belong to one or more attributes.

Our taxonomy has four dimensions: source, target, presentation and persistence. For an
overview, see Table 4.1. Now we will describe the dimensions and attributes in detail.

4.2.1 Source

A “source” dimension denotes where the metadata were originally available before they were
assigned to a part of source code. The most problematic source is human mind. In order to
obtain information present only in the memory of the programmer, he must manually enter
these data into a system for each artifact which should be labeled. The most primitive kind of
a label with a “source” of type human is a traditional source code comment. The developer
writes the label — a natural language text easing program comprehension — above a piece

28

4.2. Taxonomy

of code. The assignment of the comment to a piece of code is therefore performed by its
positioning.

Approaches categorized as code analyze the source code of a system without executing it,
1.e., using static analysis.

Useful metadata can be collected by execution of the program, using some form of
dynamic analysis. These approaches are marked as runtime. The analyzed program must be
buildable (which is often a problem [251]) and automated tests should be available (or the
program must be executed manually).

For tools utilizing the human source, a programmer must purposefully enter the metadata
with a sole intention that they will improve program comprehension. This is expensive on
human resources. On the other hand, interaction data are collected automatically, possibly
without the developer even knowing it (although that would be unethical). Using heuristics,
these tools can infer relationships between artifacts from captured keystrokes, mouse actions,
or even eye gazes [275].

As software engineering is not an individual activity, collaboration artifacts are formed
naturally as the team communicates and collaborates. These artifacts include e-mails, instant
messages, forum posts and VCS commit messages. These artifacts are often poorly or nowise
connected with the relevant source code. The purpose of collaboration approaches to code
labeling is to fill this gap.

Many tools use a combination of multiple methods. For example, a static analysis may be
used to assign source code artifacts their documentation; then a user must manually confirm
or reject the suggested links [16].

4.2.2 Target

The purpose of source code labeling is to assign metadata to a particular piece of code. Subject
of the “target” dimension is what that “piece of code” means.

This is quite a problematic question, as there are two separate views: file-based and
element-based. Some tools assign metadata to files, lines and character ranges. Other assign
them to classes, methods, variables, method calls, etc. These views are often mixed in one
tool. Furthermore, it is not clear whether a code bookmark, labeling a line containing just a
variable declaration, relates to the line or to the declaration. Therefore, we decided to mix the
views in our taxonomy.

The attributes are sorted according to granularity. A folder represents a package in some
object-oriented languages. A file often corresponds to a whole class. Method and function
definitions are multi-line elements. Elements considered /ine include variable declarations.
We decided to consider method calls and variable usages line parts.

4.2.3 Presentation

Once the metadata were retrieved and associated with a proper source code segment, it should
be presented to the developer in order to be useful.

One of the best places to show code-related data is obviously the main, editable source
code view of an IDE. This is the place which draws the most attention of a programmer,
occupies a large screen portion and offers many existing features (e.g., code completion). The
code editor can be augmented by various coloring, visual overlays (like a box surrounding
a piece of code) or images. Harward et al. [88] call them “in situ” visualizations. Syntax
highlighting may be considered a common visual augmentation [262]. We decided to regard

29

4. LABELING SOURCE CODE WITH METADATA

also gutter/ruler annotations (icons in the left or right code editor margin) as a code view
presentation.

Except for the source code editor, modern IDEs offer various supplemental views like
Package Explorer, Favorites or Class Hierarchy. Plugins can augment existing views by
additional information. For instance, packages and classes in a tree view may be augmented
by colored squares according to a metric [212].

Some tools, despite associating a part of code with additional information, display the
association in a separate view, or even window. In a better case, clicking a particular widget
in this view automatically opens and focuses the code of interest in the source code editor.
Otherwise, the user must manually open and find the code according to the displayed element
name.

4.2.4 Persistence

The association between the code and the label, and sometimes also the label data themselves,
can be saved to a permanent storage.

Rationale

There are three possible reasons for persistence.

First, in the case of fully automated static code and collaboration-sourced techniques, the
process of retrieving and associating metadata can be resource-intensive. The storage acts as
a cache’.

Second, the runtime and interaction data are partially a product of human work. Each
program execution and IDE interaction can be unique. It is therefore desirable to save at least
the data like traces or interaction logs. Once they are persisted, the analysis and association
process can be performed every time when necessary.

Third, the persistence is an absolute requirement in the case of human-sourced metadata.
A tool must not repeatedly ask a programmer to describe code, if exactly the same information
had already been entered for the same piece of code, using the same tool.

Persistence Methods

The labels can be stored in a source code file itself. The association with the target element
is thus implicit through the position of the label in the code. A typical example of internal
persistence method is a specially formatted comment.

External persistence means labels are stored separately from the source code file. They
can be saved in an XML file, or a database management system (DBMS), accessed either
locally or through a server.

Finally, the persistence method none/unknown denotes the labels are either not stored
permanently, or persistence was not mentioned in a given article at all. If a tool produces only
reports or exports which cannot be subsequently loaded, it was also incorporated into this
category.

3Suppose collaboration artifacts are already persisted in external systems.

30

4.3. Approaches and Tools

Table 4.2: Labeling approaches and tools

. Source Target Presentation | Persistence
Article

interaction
separate view
internal

line

ConcernMapper [208]
eMoose [56]
Pollicino [85]
SE-Editor [222]
Spotlight [205]
TagSEA [241]

DepDigger [23]
RegViz [18]
Stacksplorer [109]
Traceclipse [118]
TraceME [16]

GUITA [220]
Impromptu HUD [262]
in situ profiler [20]
Senseo [212]
sparklines [19]

CnP [97]
HeatMaps [213]
iTrace [275]

Deep Intellisense [94]
Miler [9]

Rationalizer [31]

101companies [67]
Code Bubbles [32]
CoderChrome [88]

OO0 0O0OROR00O0C0O0C0OCmEeEO00QC A E B E E N human
EEE RO 0DODODEROOCOOO e R NENEO0ODOQOOO|code
OmRO0OCO0|OCOO0O BB R 0O0O0DO0ODO0OO0DOO0O0QOO O runtime
BEO0O0COoOO0ORaEe R0 000000 Oo0O0|oooogoogg

B0 R0 O00O0O0OO0ODOODOOOONOOO0OO0O Qg gjcolaboration
Oo0O0ocoo|coo|omR" 0COoOO0|OoR0O0000oOo.O 0 Q)folder

O 00RO CO0OCREREOOOR B B0 QO O)|file

E RO EEER O EEECO0OEEERODOQOCOEE N[O N N nultlne

E R RO EOCOO0OERODOOCOOC0OOO0O/ A EE RN

EER R 00O ODCOERCRE RO NEODOSENNRONQOO O O] line part

E B[N0 OCEEEEENE N NENENEBEBBEBE]| codeview
OEN 00 0d0R 000000 DODOO|OO0OQO O m|existing view
O 000000 EEEOEEEOOERON
oo O 0RO

O BB EEEEER (OO0 OCEEREODODDOOERED E E N cxternal
B0 0D00 00RO R 00NN OQOOO QO|none/unknown

4.3 Approaches and Tools

In Table 4.2, we can see an overview of all reviewed approaches and tools, which answers
RQ4.1. Now we will briefly describe each of them. The approaches will be grouped by their
primary “source”.

4.3.1 Human

A concern is a piece of information about a code element, such as a feature it implements or a
design decision [247]. ConcernMapper [208] is both an Eclipse plugin and a framework to
associate parts of programs with concerns, both through a GUI (graphical user interface) and
an API (application programming interface).

The eMoose approach [56] allows tagging of API usage directives, like state restrictions

31

4. LABELING SOURCE CODE WITH METADATA

or locking, in JavaDoc comments. Subsequent highlighting of calls to such methods in an
IDE improves awareness of programmers, who then spot errors quickly.

Pollicino [85] is a plugin for collective code bookmarks, providing a more feature-rich
version of classical source code bookmarks found in the majority of IDEs.

SE-Editor [222] makes it possible to embed web pages in the source code editor of the
Eclipse IDE. The web page is embedded using a comment beginning with /*xx, followed by
an URL. This might be useful to display code-related diagrams, tutorial videos, etc.

Spotlight [205] is an IDE plugin to tag source code with concerns. Each concern can be
assigned a color, which is then displayed in the left gutter (margin) of the source code editor.
Thanks to this, a programmer can more easily identify where the given concern is located in
the program.

TagSEA [241] integrates waypoints and social tagging into the Eclipse IDE. Programmers
note waypoints — places worth marking and sharing — into the source code as comments in
the form //@tag tagname : message. Hierarchical tags and metadata (author, date) are
also supported. Collections of waypoints can be connected into routes to create source code
guides.

4.3.2 Code

DepDigger [23] visualizes the measure (metric) dep-degree by changing the background color
of source code elements — on a scale ranging from white to red — in a code view.

RegViz [18] visually augments a regular expression in-place, without a need for a separate
view. For example, groups are underlined and labeled with a group number.

Stacksplorer [109] visualizes method’s callers in a column on the left of the code editor
view, callees in the right one. Graphical overlays may be shown to visually connect the current
method definition with the left column and method calls in the source code view to items in
the right column.

Traceclipse [118] and TraceME [16] are traceability management recovery tools. They
link source artifacts (like documentation) to the target artifacts (usually source code). In the
mentioned tools, the linking is performed based on the textual similarity, using IR (information
retrieval) methods.

4.3.3 Runtime

GUITA [220] annotates GUI-related method calls with GUI snapshots of a selected widget at
the time when this method is called. This facilitates the navigation between the dynamic user
interface world and the static source code world.

The next three approaches belong to a group of “in situ visualizations” — small graphical
elements displayed directly in the source code editor. Impromptu HUD [262] displays a
realtime clock-like visual near each scheduled function, informing the programmer when the
timing event will fire. An in-situ profiler [20] shows small diagrams with runtime performance
information next to method declarations and calls. Code sparklines [19] are small charts
depictin