
Technical University of Košice
Faculty of Electrical Engineering and Informatics

Integrating Runtime Metadata with Source Code
to Facilitate Program Comprehension

Dissertation

2018 Ing. Matúš Sulír

Technical University of Košice
Faculty of Electrical Engineering and Informatics

Integrating Runtime Metadata with Source Code
to Facilitate Program Comprehension

Dissertation

Study program: Informatics
Field of study: Informatics
Department: Department of Computers and Informatics
Supervisor: doc. Ing. Jaroslav Porubän, PhD.

Košice 2018 Ing. Matúš Sulír

Abstract
The general goal of this thesis is to provide suggestions for the facilitation of program com-
prehension and maintenance. We focus on approaches utilizing dynamic analysis, integrating
the data collected during program executions with source code.

Since a compilable software system is a prerequisite for many comprehension tasks, we
first describe a study of software build failures. Next, we provide a literature overview of
approaches labeling source code with various types of metadata, including data obtained from
running programs. In a controlled experiment, we found that the presence of a specific kind
of metadata, concern annotations, improves program comprehension correctness and time.
Although concern annotations are traditionally inserted into the source code manually, we
demonstrate and evaluate their semi-automated insertion. The problem of runtime metadata
persistence in the code is also discussed, suggesting suitable formats and workflows.

An important task during program comprehension is to find source code parts relevant
to a given element displayed in the user interface of a running program. In a small-scale
study, we found that many strings displayed in the running applications were not found it their
source code at all, or they had too many occurrences. Therefore, a static source code search
is often an insufficient strategy for this task. We designed RuntimeSearch – an approach to
runtime string searching. It searches the given text in all strings being evaluated in a running
program and pauses it when a match is found, offering standard debugging features available
in integrated development environments. The approach was validated using a controlled
experiment with human participants, showing a positive effect on maintenance efficiency.

We also present DynamiDoc, a documentation generator utilizing information from dy-
namic analysis. During program executions, it records the arguments, return values and object
changes. Then, it generates sentences containing examples of concrete values, describing
individual methods in the source code. We mention advantages and disadvantages of this
approach. In a preliminary quantitative evaluation, we found that the generated sentences are
succinct.

As an alternative to documentation generation, we present an interactive approach to
source code augmentation, RuntimeSamp. Collected sample values of variables are displayed
next to each source code line in the editor. We discuss several questions which should be
answered for this approach to be useful in practice. As a supplement, we provide a systematic
mapping study of visual augmentation of source code editors.

Keywords
program comprehension, software maintenance, dynamic analysis, text search, documentation,
integrated development environment

Abstrakt
Hlavnou témou tejto práce je poskytnút’ návrhy na ul’ahčenie pochopenia a údržby programov.
Zameriavame sa na prístupy využívajúce dynamickú analýzu, integrujúce údaje zbierané
počas vykonávania programov so zdrojovým kódom.

Ked’že kompilovatel’ný softvérový systém je predpokladom pre mnoho úloh porozumenia,
najprv popisujeme štúdiu zlyhaní zostavenia softvéru. Ďalej poskytujeme literárny prehl’ad
prístupov značenia zdrojového kódu rôznymi typmi metadát, vrátane dát získaných z bežiacich
programov. Riadeným experimentom sme zistili, že prítomnost’ špecifického druhu metadát,
zámerových anotácií, zlepšuje správnost’ a čas porozumenia programom. Hoci zámerové
anotácie sú tradične vkladané do zdrojového kódu ručne, demonštrujeme a vyhodnocujeme
ich poloautomatické vkladanie. Diskutuje sa tiež o probléme uchovávania behových metadát
v kóde, navrhujúc vhodné formáty a pracovné postupy.

Dôležitou úlohou počas porozumenia programom je nájst’ časti zdrojového kódu rele-
vantné k danému elementu zobrazenému v používatel’skom rozhraní bežiaceho programu. V
štúdii malého rozsahu sme zistili, že mnoho ret’azcov zobrazených v bežiacich aplikáciách
nebolo vôbec nájdených v ich zdrojovom kóde alebo mali príliš vel’a výskytov. Preto je stat-
ické vyhl’adávanie v zdrojovom kóde často nedostatočnou stratégiou pre túto úlohu. Navrhli
sme RuntimeSearch – prístup k behovému vyhl’adávaniu ret’azcov. Vyhl’adáva daný text vo
všetkých ret’azcoch vyhodnocovaných v bežiacom programe a pozastavuje ho, ked’ je nájdená
zhoda, poskytujúc štandardné ladiace funkcionality dostupné v integrovaných vývojových
prostrediach. Prístup bol overený pomocou riadeného experimentu s l’udskými účastníkmi,
ukazujúc pozitívny efekt na účinnost’ údržby.

Predstavujeme tiež DynamiDoc, generátor dokumentácie využívajúci informácie z dy-
namickej analýzy. Počas vykonávaní programu zaznamenáva argumenty, návratové hodnoty
a zmeny objektov. Potom generuje vety obsahujúce príklady konkrétnych hodnôt, popisu-
júce jednotlivé metódy v zdrojovom kóde. Spomíname výhody a nevýhody tohto prístupu.
Predbežným kvantitatívnym vyhodnotením sme zistili, že generované vety sú stručné.

Ako alternatívu ku generovaniu dokumentácie predstavujeme interaktívny prístup k
rozširovaniu zdrojového kódu, RuntimeSamp. Zozbierané vzorové hodnoty premenných sú
zobrazené vedl’a každého riadku zdrojového kódu v editore. Diskutujeme tiež o viacerých
otázkach, ktoré by mali byt’ zodpovedané, aby bol tento prístup užitočný v praxi. Ako doplnok
ponúkame systematickú mapovaciu štúdiu vizuálneho rozširovania editorov zdrojového kódu.

Kl’účové slová
porozumenie programom, údržba softvéru, dynamická analýza, textové vyhl’adávanie, doku-
mentácia, integrované vývojové prostredie

Declaration
I declare this thesis represents my own work end effort, all used information sources are ac-
knowledged. Some parts of the thesis are a result of collaboration. Each chapter encompassing
such material contains a footnote listing co-authors and their contributions.

Košice, May 9, 2018

Acknowledgement
I would like sincerely thank my advisor Jaroslav Porubän for his guidance throughout the
study and for the inspiration I received. My thanks goes also to my colleagues and family
which has always supported me.

Contents

1 Introduction 1
1.1 Program Comprehension . 2
1.2 Source Code Labeling . 2
1.3 Searching Concepts in Running Programs 3
1.4 Generating Documentation from Runtime Values 3
1.5 Augmenting Code Lines with Variable Values 4

2 Program Comprehension Overview 5
2.1 Research Field Definition . 5
2.2 Theories and Research Methods . 6
2.3 Techniques and Tools . 6

2.3.1 Overall Comprehension . 7
2.3.2 Feature Location . 7
2.3.3 Understanding the Details . 8
2.3.4 Investigating the Rationale . 9
2.3.5 Making Programs Comprehensible 9

2.4 Trends . 9
2.4.1 Techniques . 10
2.4.2 Systems . 10
2.4.3 Research Methods . 12
2.4.4 Conclusion . 12

3 Buildability of Software Systems 13
3.1 Synopsis . 13
3.2 Build Failure Proportion . 14

3.2.1 Method . 14
3.2.2 Results . 16

3.3 Build Error Types . 17
3.3.1 Method . 17
3.3.2 Results . 18
3.3.3 Error Types . 18
3.3.4 Error Categories . 20

3.4 Relation of Build Results to Project Properties 20
3.4.1 Method . 20
3.4.2 Results . 21

CONTENTS

3.5 Discussion . 22
3.6 Threats to Validity . 22
3.7 Related Work . 23
3.8 Conclusion . 24
3.9 Future Work . 24

4 Labeling Source Code with Metadata 25
4.1 Method . 26

4.1.1 Search Strategy . 26
4.1.2 Inclusion Criteria . 27
4.1.3 Final Article List . 27
4.1.4 Data Extraction . 28

4.2 Taxonomy . 28
4.2.1 Source . 28
4.2.2 Target . 29
4.2.3 Presentation . 29
4.2.4 Persistence . 30

4.3 Approaches and Tools . 31
4.3.1 Human . 31
4.3.2 Code . 32
4.3.3 Runtime . 32
4.3.4 Interaction . 33
4.3.5 Collaboration . 33
4.3.6 Mixed Approaches . 33

4.4 Threats to Validity . 34
4.5 Related Work . 34

4.5.1 Other Labeling Forms . 34
4.5.2 Location Referencing . 34
4.5.3 Related Research Fields . 34
4.5.4 Terminology . 35

4.6 Conclusion . 35

5 Manual and Runtime-Based Concern Annotation 37
5.1 The Effect of Annotations on Program Maintenance 38

5.1.1 Hypotheses . 39
5.1.2 Variables . 39
5.1.3 Experiment Design . 40
5.1.4 Procedure . 41
5.1.5 Results . 42
5.1.6 Threats to Validity . 45
5.1.7 Conclusion . 46

5.2 Replication of the Controlled Experiment 47
5.2.1 Method . 47
5.2.2 Results . 47
5.2.3 Threats to Validity . 48
5.2.4 Conclusion . 48

5.3 Automation of Concern Annotation . 49
5.3.1 Creating Annotation Types . 50
5.3.2 Differential Code Coverage . 50

Contents

5.3.3 Writing Annotations . 51
5.4 Comparing Manual and Automated Annotation 51

5.4.1 Method . 52
5.4.2 Results . 53
5.4.3 Threats to Validity . 53

5.5 Related Work . 54
5.5.1 Concerns . 54
5.5.2 Annotations . 54
5.5.3 Differential Code Coverage . 55
5.5.4 Feature Mapping . 55

5.6 Conclusion . 55

6 Persisting Runtime Metadata 57
6.1 Format . 58

6.1.1 Annotation-Based Metadata . 58
6.1.2 Comment-Based Metadata . 60

6.2 Workflow . 61
6.2.1 Local-Only Workflow . 61
6.2.2 Shared Workflow . 62
6.2.3 Workflow Selection . 62

6.3 Limitations . 62
6.3.1 Input of the Analysis . 62
6.3.2 Automatic Reloading . 62
6.3.3 Presentation Limitations . 63
6.3.4 Applicability to Other Languages 63

6.4 Related Work . 64
6.4.1 Code Annotation . 64
6.4.2 Runtime Information . 64
6.4.3 IDE Extensions . 64
6.4.4 Workspace Sharing . 64

6.5 Conclusion . 65

7 Location of GUI Concepts in Source Code 67
7.1 Method . 68

7.1.1 GUI Scraping . 68
7.1.2 Analysis . 68

7.2 Quantitative Results . 69
7.2.1 Occurrence Counts . 69
7.2.2 File Types . 70

7.3 Qualitative Results . 70
7.3.1 Strings Not Present in Code . 71
7.3.2 Strings Present in Code . 71

7.4 Threats to Validity . 71
7.4.1 Construct Validity . 72
7.4.2 External Validity . 72
7.4.3 Reliability . 72

7.5 Related Work . 72
7.5.1 GUI Ripping . 72
7.5.2 Feature Location Using GUIs . 72

CONTENTS

7.5.3 Feature Location in General . 73
7.5.4 Other Studies . 73

7.6 Conclusion . 73

8 Searching in Runtime Values 75
8.1 Runtime-Searching Approach . 76

8.1.1 User’s View . 76
8.1.2 Principle . 77
8.1.3 Implementation Details . 78

8.2 Case Study . 78
8.2.1 Finding an Initial Point . 78
8.2.2 Searching for Occurrences . 79
8.2.3 The Fabricated Text Technique . 79
8.2.4 Non-GUI Strings . 79
8.2.5 Hypothesis Confirmation . 80

8.3 Performance . 81
8.4 Quantitative Evaluation . 81

8.4.1 Method . 81
8.4.2 Results . 82
8.4.3 Threats to Validity . 84
8.4.4 Conclusion . 85

8.5 Related Work . 85
8.5.1 Searching . 85
8.5.2 Debugging . 85
8.5.3 Concept Location . 86

8.6 Conclusion and Future Work . 87

9 Generating Documentation from Runtime Information 89
9.1 Documentation Approach . 90

9.1.1 Tracing . 91
9.1.2 Selection of Examples . 92
9.1.3 Documentation Generation . 92

9.2 Qualitative Evaluation . 94
9.2.1 Utility Methods . 94
9.2.2 Data Structures . 95
9.2.3 Changing Target Object State . 95
9.2.4 Changing Argument State . 96
9.2.5 Operations Affecting External World 96
9.2.6 Methods Doing Too Much . 96
9.2.7 Example Selection . 96

9.3 Quantitative Evaluation . 97
9.3.1 Documentation Length . 97
9.3.2 Overridden String Representation in Documentation 99

9.4 Related Work . 100
9.4.1 Static Analysis and Repository Mining 100
9.4.2 Dynamic Analysis . 101

9.5 Conclusion and Future Work . 102

10 Visual Source Code Augmentation 105

Contents

10.1 Definition and History . 106
10.1.1 Definition . 106
10.1.2 Historical View . 106

10.2 Method . 107
10.2.1 Research Questions . 107
10.2.2 Selection Criteria . 107
10.2.3 Search Strategy . 107
10.2.4 Data Extraction . 109
10.2.5 Threats to Validity . 109

10.3 Taxonomy . 110
10.3.1 Source . 110
10.3.2 Type . 112
10.3.3 Visualization . 113
10.3.4 Location . 114
10.3.5 Target . 115
10.3.6 Interaction . 116
10.3.7 IDE . 117

10.4 Approaches and Tools . 117
10.5 Conclusion . 117

11 Augmenting Code Lines with Runtime Values 121
11.1 Object Representation . 122
11.2 Recording Moment Selection . 123
11.3 Iteration Selection . 124
11.4 Iteration Detection . 125
11.5 Collection Efficiency . 125
11.6 Filtering of Variables . 126
11.7 Data Invalidation . 127
11.8 Conclusion . 127

12 Conclusion 129
12.1 Summary . 129
12.2 Contributions . 131
12.3 Future Work . 131

Bibliography 133

Selected Author’s Publications 153
Important Conferences . 153
Current Contents Journals . 153
Other Journals . 154
Other Conferences . 154

List of Figures

2.1 Program comprehension in the context of a software development process . . . 6
2.2 Static vs. dynamic analysis . 10
2.3 Feature location vs. visualization . 11
2.4 Program slicing, code clone detection . 11
2.5 Studied systems – legacy vs. open source . 11
2.6 Types of research in program comprehension 12

3.1 Build study overview . 14
3.2 Recognized build tools . 17
3.3 Build success vs. failure . 17
3.4 Build error categories . 20
3.5 Build status for individual build tools . 21
3.6 Beanplots (distributions+medians) of project characteristics 21

5.1 Results of the controlled experiment . 44
5.2 Results of the experiment replication . 49
5.3 An annotation process for a specific concern 50

7.1 Occurrence counts of strings/words divided by file types 70

8.1 A possible example of RuntimeSeach utilization 77
8.2 RuntimeSearch in action . 80
8.3 Efficiency of tasks for a group using RuntimeSearch vs. standard IDE features . 84

9.1 Length of a documentation sentence . 98
9.2 Relative documentation sentence length . 99

10.1 A preview of selected augmentation features in an industrial IDE 106
10.2 The systematic survey search process and article selection overview 108
10.3 Tools with various visualization kinds . 114
10.4 Tools with various location kinds . 115
10.5 DrScheme – a tool utilizing the popover interaction 116

11.1 Sample values augmentation in RuntimeSamp 122

List of Tables

3.1 Studied build systems . 15
3.2 The most frequent Maven error types . 19
3.3 The most frequent Gradle error types . 19
3.4 The most frequent Ant error types . 19

4.1 Source code labeling taxonomy . 28
4.2 Labeling approaches and tools . 31

5.1 Experiment results for individual subjects . 43
5.2 Detailed results of experiment replication . 48
5.3 Features and their overlaps . 53

6.1 File-reloading capability of selected IDEs and text editors 63

7.1 The applications used in the study . 68
7.2 The occurrence counts of whole strings from GUIs in the source code 69
7.3 The occurrence counts of individual words from GUIs in the source code 69

8.1 Detailed results of the RuntimeSearch experiment 83

9.1 A decision table for the documentation sentence templates 93
9.2 Overridden/default string representations . 100

10.1 The taxonomy of source code editor augmentation 111
10.2 Augmentation tools . 118
10.3 Augmentation tools (continued) . 119

11.1 Time overhead of instrumented runs . 127

List of Abbreviations

API application programming interface
DBMS database management system
DL digital library
DSL domain specific language
CI continuous integration
FO formatting objects
GUI graphical user interface
GPL general-purpose language
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IDE integrated development environment
JAR Java ARchive
Java ME Java Micro Edition
JDK Java Development Kit
JNI Java Native Interface
JSON JavaScript Object Notation
kLOC thousands of lines of code
LOC lines of code
PDF Portable Document Format
POM Project Object Model
REST REpresentational State Transfer
UI user interface
UML Unified Modeling Language
URL Uniform Resource Locator
VCS version control system
XML eXtensible Markup Language

Chapter 1

Introduction

Maintenance of existing computer program systems typically counts for about 60% of software
development cost [78]. Before a part of a system can be changed, it must be comprehended
[195]. Nowadays, software projects are built using large frameworks. Systems have an
immense number of dependencies and their behavior often depends on results of asynchronous
calls to remote servers. They consist of multiple layers and having a web or mobile interface
becomes a standard. Project teams are large and dispersed over the world [238], which
hinders traditional communication about intents in the source code. Without proper tool
support, understanding of software systems may soon become an unattainable task. Therefore,
this work aims to improve understanding of existing programs by developers, i.e., program
comprehension.

A programming language should serve as a mean of communication between a human and
a computer. A valid source code of a program, by definition, contains all required information
to be unambiguously compiled and executed on a computer. On the other hand, the source
code is often understood by humans with great difficulties, or not at all. This can be attributed
to a lack of information useful for humans contained in the code. Many approaches aim
to fill this gap by assigning additional metadata to source code elements. These metadata
can come from diverse sources: from manually entered comments, through documentation
generated by static analysis, to harvested instant messages. They can be of various types –
from numeric values to texts and images – and presented in even more various ways. They can
be permanently persisted in the source code or a database, or shown only for a split second in
the integrated development environment (IDE).

A particularly interesting kind of metadata are data obtained by dynamic analysis, i.e.,
runtime metadata. During the execution of a program, inherently abstract source code becomes
concrete. Individual runtime states and their transitions offer the developer exemplified views
of the program.

Our ultimate goal is to improve program understanding efficiency, particularly by integrat-
ing the run-time information with the source code. In this thesis, we offer a few approaches
trying to at least partially fulfill this ambitious goal. Along with them, we provide motivational
empirical studies, evaluations and literature reviews about related topics.

In this chapter, we provide an overview of the dissertation. We briefly describe the
discussed topics and list hypotheses and research questions which are elaborated in the next
chapters. Additionally, we note the used research methods.

1

1. INTRODUCTION

1.1 Program Comprehension
In chapter 2, we first provide a general overview of program comprehension theories, ap-
proaches and tools in the form of an ad hoc literature review. Then we outline rising and
falling trends in program comprehension over the timeline of 15 years. We asked the research
question:

• RQ2.1: What are the rising and falling trends in program comprehension?
An automated technique of trend analysis on titles, abstract and keywords of scientific papers
was used.

During multiple experiments, we recognized the importance of the software build process.
Many open source projects fail to be built from source code, which, besides being a practical
problem, hinders program comprehension research. A successful build result is a prerequisite
for almost all comprehension activities, including the assignment of dynamic analysis data
to parts of source code. Although there exists limited evidence about build failures (e.g., by
Neitsch et al. [175] or Seo et al. [224]), the studies are rarely large-scale and suffer from
low external validity. To quantify the severity of the build failure problem, we tried to fully
automatically build about 7,000 Java projects. In chapter 3, we ask the following research
questions:

• RQ3.1 What portion of projects fails to build?
• RQ3.2 What types of build errors do occur most frequently?
• RQ3.3 Is there an association between the build success/failure and other project’s

properties (e.g., the used build tool, age)?
To answer the first two questions, we use quantitative methods. Statistical hypothesis testing
is used for the third question.

1.2 Source Code Labeling
Since understanding a program only by looking at its source code is difficult, many approaches
label parts of the code with various metadata. They include human-written descriptions
of methods, information obtained from static and dynamic analysis, IDE interaction data,
information from version control systems and other communication artifacts. These metadata
are then presented to the programmer by appropriate tools. We conducted a partially systematic
mapping study with the aim of taxonomy construction in this broad research area. We
combined manual searching of selected years from relevant conferences and journals, keyword
search and references search, and a personal bibliography. The main purpose was to show the
variety of the research area. The following questions were asked in chapter 4:

• RQ4.1: What approaches (and tools implementing them) do exist to label parts of
source code with additional metadata and present them to a programmer in order to
improve program comprehension?

• RQ4.2: How can these approaches be categorized?
Concern annotations represent a specific kind of source code labeling. They are human-

written Java annotations describing the intentions behind a particular class or method. Using
a controlled experiment with human participants, we tested the following hypothesis in
chapter 5:

• H5.1: The presence of concern annotations in the code improves program comprehen-
sion and maintenance correctness, time and confidence.

To further support our hypothesis, we also performed an experiment replication, now on
industrial developers instead of students.

2

1.3. Searching Concepts in Running Programs

Manual insertion and updating of concern annotations in the source code are tedious. Thus
we designed a runtime-based, semi-automated approach of concern annotation. This method
uses an existing dynamic analysis approach (software reconnaissance [278]) to extract sets
of methods pertaining to the given feature. Then we build upon the work which compares
the overlap of multiple independent human annotators of the same code [181] by asking the
research question:

• RQ5.1: How does the overlap between semi-automatic and code author’s annotations
compare to the overlap among annotations of multiple non-authors?

The previously mentioned approach can be extended to any runtime metadata, not only
concern annotations. In chapter 6, we describe a method which assigns information obtained
from dynamic analysis to source code elements – e.g., a set of dynamic method callers or
code coverage results. Thus we ask the question:

• RQ6.1: How can runtime metadata be persisted directly in source code files?
We discuss what formats are suitable for metadata persisted in source files and how such an
approach fits into an existing software development workflow.

1.3 Searching Concepts in Running Programs
Programmers often interact with the UI (user interface) of a running program, putting them-
selves in the role of end users. They create mappings of UI elements to the source code in
their minds [209]. However, anecdotal evidence says us that not every textual label displayed
in the GUI (graphical user interface) can be easily found in the source code. Therefore, we
decided to quantitatively examine the relationship between the terms occurring in the static
source code and the labels displayed in the GUI of a running program. The GUIs of four open
source Java applications were automatically traversed, producing a list of strings and words
contained in these strings. In chapter 7, we ask three research questions:

• RQ7.1: What portion of strings and words displayed in the GUIs of running desktop
Java applications are located in their static source code too?

• RQ7.2: Mainly in what types of files are these terms located?
• RQ7.3: If some strings are not located in the source code, what are common reasons?
This study presents a motivation for the approach we designed – RuntimeSearch. It allows

a developer to find run-time values in a manner similar to traditional, static source code search.
After entering the searched string, the program is run, while comparing all evaluated string
expressions at runtime with the given text. When a match is found, the program is paused
and a traditional debugger is open, with all standard operations available. This is useful as a
lightweight form of feature location or to confirm hypotheses during debugging. In chapter 8,
we had two research questions and one hypothesis regarding our new approach:

• RQ8.1: What are possible use cases of RuntimeSearch?
• RQ8.2: What is the performance overhead of searching strings in the runtime?
• H8.1: RuntimeSearch improves the efficiency of search-focused maintenance tasks.

They were answered using performance evaluation, a case study, and a controlled experiment,
respectively.

1.4 Generating Documentation from Runtime Values
There exist multiple approaches which label the source code by automatically generated
documentation [174]. However, they traditionally process the static source code of a program

3

1. INTRODUCTION

and associated collaboration artifacts. Our new approach – DynamiDoc, described in chapter 9,
generates documentation sentences for methods using information from dynamic analysis.
For each method, string representations of concrete arguments, return values and object states
before and after the method execution are recorded. Then, sentences utilizing sample values
are generated. For example, for a list reversal, the sentence can look like: “When called
on [1.5, 2], the object changed to [2, 1.5].” We perform both a qualitative and preliminary
quantitative evaluation:

• RQ9.1: What are the strengths and weaknesses of DynamiDoc?
• RQ9.2: What is a typical length of documentation sentences generated by DynamiDoc?
• RQ9.3: What portion of objects contained in the generated sentences has a custom

string representation?

1.5 Augmenting Code Lines with Variable Values
Instead of inserting metadata into source code files, it is also possible to develop an interactive
approach in the form of an IDE plugin. In recent years, we noted the advance of visual
enhancements of source code editors. The IDEs for textual languages are no longer purely
textual – they display graphs, charts, texts and other information directly next to the related
code. We would like to use this fact with advantage and design an IDE augmentation approach
using dynamic analysis.

First, we performed a systematic mapping study about visual augmentation of source code
editors in general. In chapter 10, the following questions are answered:

• RQ10.1: What source code editor augmentation tools are described in the literature?
• RQ10.2: How can they be categorized?
Finally, in chapter 11, we describe RuntimeSamp – our technique of visual source code

augmentation using runtime information, namely the values of variables. First, a few values
of each variable are recorded during program execution. Next, at the end of each line, the
sample values are displayed thanks to an IDE plugin. The approach has a similar base idea as
DynamiDoc – to help the programmer by presenting concrete examples of values; however,
this time they are assigned to each line instead of the method as a whole. The following
research questions were asked:

• RQ11.1: How to present complicated objects succinctly on a small space?
• RQ11.2: When exactly should we capture the values of variables?
• RQ11.3: How to decide which iteration to display?
• RQ11.4: How to define an iteration in a way which is easy to detect and present?
• RQ11.5: How to collect enough data for sample values presentation while keeping the

overhead reasonable?
• RQ11.6: Which variable values should be displayed and which not?
• RQ11.7: When and how to invalidate the collected variable values?

Since RuntimeSamp is a preliminary approach, we answered some of these questions only
naively, leaving space for further research.

4

Chapter 2

Program Comprehension Overview

In this chapter1, we will provide a brief general overview of the research field of program
comprehension – its theories, methods, selected techniques and trends.

2.1 Research Field Definition
According to Biggerstaff et al. [25], a person comprehends a program if one understands
its structure, behavior and connection to the application domain. We can say that program
comprehension describes how developers understand existing programs (whether or not
written by themselves) in order to improve their functional or non-functional qualities.

To delineate the research field, let us put program comprehension in the context of a
software development process (Fig. 2.1). As a developer reads the specification, a mental
model forms in his or her head. A mental model is defined as a representation of a program in
the programmer’s mind [239]. This model is refined until the developer is able to implement
parts of the application and create manually produced artifacts – traditionally the source
code. The code is compiled, producing generated artifacts like a runnable application. To
comprehend the program, the developer inspects the source code and debugs the produced ap-
plication. This further refines the mental model and the development continues. Occasionally,
the specification must be adapted because not all requirements were implemented in a desired
way.

It is important to note that the order of the mentioned processes is not fixed and they often
interleave or are performed in parallel. In many cases the programmer starts to familiarize
with the program by inspecting generated artifacts – the running application. Finally, the
diagram depicts only one specific developer’s perspective and does not consider team aspects
of software engineering.

Two most related research fields are software maintenance and reverse engineering.
Maintenance is a broader term which encompasses practically a whole software development
process since it is difficult to distinguish between software creation and software modification.

The terms program comprehension and reverse engineering are often used interchangeably,
although there is a slight difference. Reverse engineering focuses on techniques and tools for

1This chapter contains material from our articles: [244], [249]. The copyright symbols next to some figures
and tables do not represent our opinion – they are a requirement of the publisher.

5

2. PROGRAM COMPREHENSION OVERVIEW

specification

mental model

design

implement

manually produced
artifacts

generated
artifacts

generate

comprehend comprehend

adapt

Figure 2.1: Program comprehension in the context of a software development process. Dashed arrows represent
manual, human-performed processes; solid arrows are automatic, computer-performed operations. The research
area of program comprehension is marked in boldface.

creation of higher-level abstraction documents from lower-level ones. Program comprehension
research is also interested in the effect of using these tools. Therefore, reverse engineering
techniques aid developers in program comprehension [168].

2.2 Theories and Research Methods

A cognitive model, also called a comprehension model, is a theory describing psychological
processes involved in program comprehension which help to construct the mental model of a
program [239]. There are multiple cognitive models described by researchers. Generally, we
can divide them into top-down and bottom-up approaches.

Top-down program comprehension starts with the programmer’s problem domain knowl-
edge. The person forms hypotheses about the program and accepts or rejects them by
inspecting the source code and other artifacts. The hypotheses are gradually refined into
sub-hypotheses [35]. This type of comprehension is typically used when the program is
familiar [274]. An example of a top-down cognitive model is the Brooks model [35].

Bottom-up comprehension is characterized by reading the source code line by line and
incrementally grouping them to form higher-level abstractions [239]. An example is the
Pennington model [188].

The fact that there are at least seven, relatively complex comprehension models described
in literature (six in a review [274] and one recent [22]) suggests us an idea that this number is
not finite. Each person’s cognition is quite different and it depends on a specific situation. It is
therefore difficult to generalize the theories and design useful program comprehension tools
directly after them. For this reason, empirical studies are very common in the field of program
comprehension. For an example of a controlled experiment in program comprehension, see
section 5.1.

2.3 Techniques and Tools

We will now explore the process of program comprehension from the most high-level perspec-
tive to detailed inspection, providing an overview of relevant techniques and tools available,
along with problems developers encounter.

6

2.3. Techniques and Tools

2.3.1 Overall Comprehension
Architecture comprehension tools visualize the overall structure of a software system, its
components and their relationship. Polymetric view tools like CodeCrawler [128] display
code entities as nodes, relations between them as edges and arbitrary metrics as node shape
attributes. For example, classes are displayed as rectangles with the width proportional to
the method count and the height proportional to the line count. A disadvantage of such tools
is the fact they usually focus just on simple quantitative metrics and perform only a static
analysis of source code.

Metaphor-based visualizations transform code entities to 2D or 3D objects known from
real life. For example, the famous city metaphor displays classes as buildings – like in
the EvoSpaces tool [2]. An industrial application of such visualizations is questionable. A
more promising approach is offered by ExplorViz [72], which combines them with so-called
landscape view – a mixture of UML deployment and activity diagram produced by analyzing
execution traces.

Domain analysis tools can be helpful for a new team member to become familiar with
the system. The DEAL method [15] extracts a domain model from the GUI (graphical user
interface) of a running application. However, manual user interaction is necessary and the
method focuses only on a static structure of programs like relations between forms and their
controls.

To gain the overview of domain knowledge contained in a program, it is possible to map
program identifiers to an ontological dictionary like WordNet using subgraph homomorphism
[199]. However, the approach is only semi-automatic and it is necessary to adjust the results
manually. This is a result of representational defects like polysemy where one identifier in a
program can represent multiple real-world concepts. Some types of defects can be detected
and repaired, but the other are inherent to the nature of relationship between programs written
in current general-purpose languages (GPLs) and the real world [200].

2.3.2 Feature Location
As software becomes more complicated, it is impossible for a programmer to understand it
whole. Therefore partial, or as-needed comprehension is necessary [196].

Each software consists of problem concepts and features (like a shopping cart or shipping
method selection) and solution features (e.g., a web presentation and database persistence).
One problem domain feature is scattered across multiple solution features. This is called
feature delocalization [82]. One of the key objectives of program comprehension is to tackle
this phenomenon which impedes code navigation by using feature location (or concept
location) tools.

Textual code search is a common feature location approach. To find syntactical patterns,
programmers often use complicated regular expressions and the results are unsatisfactory as
programming languages are rarely regular. An AST (abstract syntax tree) querying is more
viable. By using an intuitive “query-by-example” language [186], developers can search an
AST without realizing it. However, the approach is not usable for more complicated patterns.

The MuTT tool [143] implements feature location by execution trace collection. While
debugging the program, just before utilizing the feature of interest like adding an item to the
shopping cart, the programmer clicks a button in the tool to start collecting the trace. After
performing the desired action, the button is clicked again. A list of all methods executed
between the two clicks is displayed in an IDE (integrated development editor). It must
be manually filtered since it probably contains many auxiliary methods, not related to the

7

2. PROGRAM COMPREHENSION OVERVIEW

tracked feature. Furthermore, to find multiple features, it is necessary to manually repeat the
mentioned actions for each of them. The possibility of automation should be investigated.

After the features are located, it is desirable to mark their occurrences in the source code
to avoid duplicate work in the future. This activity is called code labeling or concern tagging.
In the previous example, we would mark all found methods with a tag “add to cart”. An
academic tool FLAT3 [221] combines: full-text code search, feature location by execution
trace collection using the MuTT tool, feature labeling with method-level granularity, and
visualization of feature distribution across the source code files.

An another approach for feature location is differential code coverage [226]. If we run
a program first selecting a feature of interest and then not, the difference of code coverage
should be the source code of the feature. This approach suffers from similar limitations as
execution trace collection.

It would be useful to combine execution trace collection of the MuTT tool with differential
code coverage and assess the effectiveness of such approach. Furthermore, as bugs can be
considered a kind of features (unwanted, of course), bug localization is a specific kind of
feature localization. Differential code coverage could be used to localize the faults, too.

An interesting feature location tool is included directly in the core of an industrial IDE,
NetBeans. During the runtime, it is possible to take so-called GUI Snapshot of the debugged
program user interface and inspect the events to be performed after e.g., clicking a button or
selecting a combo-box item.

2.3.3 Understanding the Details

The Theseus tool [140] shows how many times a particular method has been called during a
web application execution. These numbers are displayed directly in the code editor and in real
time. By clicking a given method, a retroactive log containing the argument values for each
execution is shown. This allows for feature location along with a more thorough inspection
of the program behavior. A similar tool [153], but for desktop Java applications, operates
on individual source code lines instead of methods and thus focuses on detailed algorithm
analysis.

Many difficult comprehension questions developers ask when debugging can be answered
by asking reachability questions. A reachability question involves searching for all possible
execution paths to find source code statements matching the given criteria [129]. However,
developers’ questions are often vague and difficult to formulate in mathematical terms. The
overhead used to formulate such queries can exceed the benefits they provide.

As developers inspect the source code and associated artifacts using various techniques,
they create mental models of the code which contain information far behind what is explicitly
written. Despite there is a high demand for this implicit knowledge [147], it is not explicitly
captured [130] or it is captured only in transient notes, not persisted across sessions [147].
One possible cause is that each developer’s mental model is different and thus the personal
notes created by one developer are not useful for an another one. This hypothesis should be
tested by further research.

One form of temporary knowledge saving is the use of bookmarks in an IDE. To share
such personal findings, collective bookmarks [85] can be used. In the study, they were found
useful for marking the lines where to start with a given type of task, but not for detailed
explanations.

8

2.4. Trends

2.3.4 Investigating the Rationale

Even if the code is thoroughly understood, programmers often ask why it was implemented
this way [130]. One of the manually produced artifacts in Fig. 2.1 are version control system
commits. Commit messages may contain invaluable information about intentions behind the
source code.

Surprisingly, less developers actually read commit messages than write them [147]. A
possible cause is that IDEs do not present them conveniently. Plugins like Deep Intellisense
or Rationalizer [31] try to overcome this issue by displaying history information relevant to a
given piece of code.

For version control analysis tools to be successful, each commit must contain code related
to only one task. This is often not true in reality. A technique [115] can detect tangled changes
before they are committed and suggest how they could be untangled. The disadvantage is a
high ratio of false positives.

2.3.5 Making Programs Comprehensible

While analyzing existing software is useful, we must also learn lessons from it and design
new systems to be more comprehensible.

Identifier naming is a significant factor of program comprehension. Method names can be
evaluated for comprehensibility and more intuitive names can be suggested, using a database
of commonly used n-grams [261].

Instead of using feature location approaches with often unsatisfactory results, there is
a possibility to label classes and methods by their associated concerns using source code
annotations immediately when writing the code. Then, source code projections [193] can
be used to show classes and methods associated with a given concern in an IDE. While
projections are perceived as useful, labeling the code manually is a time-consuming activity
which does not directly affect the resulting program execution. Therefore, we can expect
programmers to skip labeling or leave the annotations out of sync with the rest of the code,
just as it often happens with comments.

Much work is done in the area of code clone detection and removal since there is a
widespread opinion that duplicated code negatively affects comprehension. Surprisingly, a
study [194] found out that fixing bugs affecting cloned code do not require more effort than
fixing other bugs. Code with high regularity, which may be a result of cloning, is more easily
comprehended by developers [102]. Furthermore, developers perceive code duplication in
a broader sense than simple copy-pasting – for example, implementing the same method in
multiple languages or in multiple version control branches [130].

2.4 Trends
It is beneficial for researchers not only to find out which approaches exist in the area, but also
to gain insight about their popularity over time. Therefore, we ask the following research
question:

RQ2.1 What are the rising and falling trends in program comprehension?
To analyze the development of trends in the research area of program comprehension, we

decided to perform an automated trend analysis on the metadata of research articles published
between the years 2000 and 2014 (inclusive).

9

2. PROGRAM COMPREHENSION OVERVIEW

2000 2002 2004 2006 2008 2010 2012 2014

year

fr
e
q
u
e
n
c
y

0
 %

0
.1

 %
0
.2

 %
0
.3

 %
0
.4

 %

dynamic analysis
static analysis

Figure 2.2: Static vs. dynamic analysis. © 2015 IEEE

We searched the citation databases Scopus2, IEEE Xplore3 and HCI Bibliography4 for the
following exact terms:

• program comprehension,
• program understanding,
• code comprehension.

Titles, abstracts and author-supplied keywords of 1885 articles were analyzed using a tech-
nique called n-grams [163]. For each year, a frequency of every phrase among all phrases
of the given length was determined. For a detailed description of the method, see our article
[249].

2.4.1 Techniques
Static program analysis (e.g., [122]) deals with the source code of an application without
running it, whereas dynamic analysis [47] utilizes runtime information. As seen in Fig. 2.2,
in 2004, the dynamic program analysis overtook the static one and this state lasts until today.

We can see a plot of two often used program comprehension techniques – feature location
and visualization – in Fig. 2.3. While visualization is relatively steady, feature location rises
rapidly from 2004.

Program slicing [284] is a technique used to find all code semantically related to the
given statement or variable and produce a new program, containing only this related code. In
Fig. 2.4, we can see a decreasing popularity of slicing.

Code clone detection [214] is a research field with a long tradition. However, from Fig. 2.4
it is obvious that it started to associate with program comprehension only in recent years.

2.4.2 Systems
In Fig. 2.5, we can see what types of systems the researchers study. Legacy systems have a
clearly decreasing tendency during the last 15 years. One trend which immediately caught
our attention is an extremely rapid increase of the n-gram “open source” between the years
2003 and 2009.

2http://www.scopus.com
3http://ieeexplore.ieee.org
4http://hcibib.org/ICPC14

10

2000 2002 2004 2006 2008 2010 2012 2014

year

fr
e
q
u
e
n
c
y

0
 %

0
.2

 %
0
.4

 %
0
.6

 %

feature location+concept location+concern location
visualization+visualisation+visualize

Figure 2.3: Feature location vs. visualization. © 2015 IEEE

2000 2002 2004 2006 2008 2010 2012 2014

year

fr
e
q
u
e
n
c
y

0
 %

0
.2

 %
0
.6

 %
1
 %

slicing+slice+slices
clone+clones

Figure 2.4: Program slicing, code clone detection. © 2015 IEEE

2000 2002 2004 2006 2008 2010 2012 2014

year

fr
e
q
u
e
n
c
y

0
 %

0
.1

 %
0
.2

 %
0
.3

 %

legacy systems+legacy system+legacy software
open source

Figure 2.5: Studied systems – legacy vs. open source. © 2015 IEEE

11

2. PROGRAM COMPREHENSION OVERVIEW

2000 2002 2004 2006 2008 2010 2012 2014

year

fr
e
q
u
e
n
c
y

0
 %

0
.1

 %
0
.2

 %
0
.3

 %

case study
experiment
review+survey

Figure 2.6: Types of research in program comprehension. © 2015 IEEE

2.4.3 Research Methods
We can see in Fig. 2.6 that case studies have a slightly decreasing tendency. There is a sudden
rise of experiments in 2011, when they even outperformed case studies. Naturally, reviews
and surveys are the least common types as they summarize existing research results.

2.4.4 Conclusion
We analyzed the trending phrases in bibliographies to see the rising and falling ones. The
most rising trends are feature (and concept) location and the study of open source systems.
Program slicing and the study of legacy systems are the most falling trends.

12

Chapter 3

Buildability of Software Systems

Being able to build a software system from its source code is a prerequisite for almost all
comprehension activities. In the cases when we aim to label parts of source code with
metadata using runtime information, this requirements is especially important: It is necessary
to have both a runnable software system and its source code, while this runnable system was
produced exactly from the version of the source code we possess. Consider the following
three situations:

• A researcher wants to use an open source system in his next program comprehension
experiment. He downloads the software project of interest in a form of a source code
archive, opens it in an IDE (integrated development environment) and tries to build it.

• A student is willing to contribute to her favorite open source program with a new feature.
She pulls the source from the project’s version control system. Before starting the actual
work, she checks whether the project can be built using a command-line interface of
the build system.

• A practitioner is trying to fix a bug in a third-party library their company extensively
uses. Again, the necessary precondition is to make sure the library builds.

All three situations have something in common: The message “Build failed” is likely to
appear. Instead of doing useful work, the developers start to inspect cryptic error messages,
search them on the internet, modify project configuration files, manually install packages
and configure paths. This can take hours to fix – or, at worst, the developer gives up. Such
situations significantly hinder the program comprehension efforts of developers.

3.1 Synopsis
In the broadest sense, the purpose of a build system is to generate output data given a set of
inputs [230]. Considering a more specific, typical scenario, a build system reads a buildfile –
e.g., a Maven POM (Project Object Model) file. Using the supplied information, it downloads
necessary third-party components. Next, it executes a compiler to produce binary files from
textual source code. Finally, it packages the program in a format suitable for deployment.

As tools like Make have existed since the 70’s [69], build systems are often perceived
as a solved problem by researchers [175]. Nevertheless, developers often encounter build
problems which negatively affect their work [112]. While there exists anecdotal evidence that

13

3. BUILDABILITY OF SOFTWARE SYSTEMS

Java projects at Github (~2,000,000)

random projects matching the criteria (10,000)

build success (4,494) build failure (2,764)

error types (292)

error categories (12)

projects with a recognized build-file (7,264)

association study

RQ3.3

RQ3.1

RQ3.2

RQ3.2

timeout (6)

Figure 3.1: Build study overview

open source systems are sometimes difficult to build [175], large-scale studies on a substantial
number of projects are rare. In this chapter1, we aim to provide empirical evidence that
build system invocations of many open source projects fail. Furthermore, we will look at the
reasons of failures and factors affecting them.

A software system should be buildable from source in one step [232]. In the Java
ecosystem, we expect an invocation of a build system like Maven, Gradle, or Ant to represent
this step.

We strive to simulate a simple programming environment of a Java developer, download a
large number of open source Java projects from the software forge GitHub, fully automatically
execute the build command for each of them, and observe the build process outcomes.

We formulate our research questions as follows:
RQ3.1 What portion of projects fails to build?
RQ3.2 What types of build errors do occur most frequently?
RQ3.3 Is there an association between the build success/failure and other project’s

properties (e.g., the used build tool, age)?
For a high-level overview, see Figure 3.1. In section 3.2, we answer RQ3.1 by a simulation

study. Using the collected data, a semi-automated classification of failed builds (RQ3.2) is
presented in section 3.3. An association study is also performed on the data (RQ3.3), which
is described in section 3.4.

3.2 Build Failure Proportion
In this section, we answer the first research question.

3.2.1 Method
The data collection process consisted of two steps: obtaining a list of suitable projects, and
the building process itself. The whole process was fully automated, controlled by a script.

1The content of this chapter was published in our article [251].

14

3.2. Build Failure Proportion

Table 3.1: The studied build systems (auxiliary log-formatting arguments were omitted)

Tool File name Build command

Gradle build.gradle gradle clean assemble

Maven pom.xml mvn clean package -DskipTests

Ant build.xml ant clean; ant jar || ant war || ant dist || ant

Project Selection

From a set of all public repositories at a large software forge, GitHub, we selected a random
sample of projects corresponding to the following inclusion criteria:

• projects written in Java,
• not using JNI (Java Native Interface), Android or Java Micro Edition (ME) APIs,
• having an open source license,
• and forked at least once.

Now we will describe the rationale behind the criteria and details of the process.
In this study, we focused only on projects written in the Java language. Java seems like an

ideal choice, since it is a compiled language and it offers very feature-rich build systems. To
determine the project’s main language, the GitHub API2 was used. There were approximately
2,000,000 Java projects on GitHub at the time the study was conducted (see Figure 3.1).

We were interested only in open source projects. To assess whether a particular project is
open-source, we utilized the information supplied by the GitHub API. GitHub produces these
data by matching the contents of “License” files with a set of well-known licenses. Around
20% of GitHub repositories contain a recognized license.3

Only repositories with at least one fork were included. First, this indicates that there is
some interest in cooperation on a project. Second, this criterion lowered the number of results
by a factor of 10 to keep the number of searched repositories reasonable.4

We requested the GitHub API with a combination of queries corresponding to the above
criteria. From the list of returned repositories, a random sample was selected. The most recent
version (the current “master” branch) of each project was downloaded in a form of a tarball.
The total number of downloaded archives was 14,567.

After extraction of the archives, the presence of JNI, Android and Java ME APIs was
tested using file name and content patterns. The reason for exclusion of projects using these
APIs was to maximize internal validity. Thanks to JNI, Java source code could call methods
written in other languages, while we were interested in pure Java. We would be no longer
testing just Java build systems, but also other toolchains outside the Java ecosystem, which
also applies to Android and Java ME.

The resulting set of random projects, corresponding to the inclusion criteria, consists of
10,000 projects.

Build Process

For each of the 10,000 projects, a primary build tool was recognized by the script. In our
study, we focused on three popular build systems: Gradle, Maven and Ant. To assess which

2http://developer.github.com/v3/
3http://github.com/blog/1964-open-source-license-usage-on-github-com
4The GitHub API does not support random selection of repositories, so we needed to retrieve metadata for

all projects matching the criteria and sample them locally.

15

http://developer.github.com/v3/
http://github.com/blog/1964-open-source-license-usage-on-github-com

3. BUILDABILITY OF SOFTWARE SYSTEMS

build system a particular project uses, the presence of a build-file was checked in the project’s
root folder. For a list of file names, see Table 3.1, column “File name”. In case multiple
build-files are found in the root directory, Gradle takes precedence over Maven, and Maven
has higher priority than Ant. The ordering is based on an assumption that newer systems are
used as a primary build tool, while preserving the legacy ones for compatibility.

If a project contained build-file(s) only in non-root directories, or did not include a
build-file at all, we excluded it from further processing. This leaves us with 7,264 projects.

The builds were executed using the lightweight virtualization platform Docker5. The goal
was to simulate a simple yet functional software environment of a Java programmer. The
Docker image (available at http://quay.io/sulir/builds) contained the following software:

• the Linux distribution Fedora,
• Java SE Development Kit (JDK) 8,
• Gradle, Maven and Ant build tools,
• the dependency manager Ivy,
• the version control system Git,
• a Ruby interpreter (to execute the control script),
• and the “tar” and “unzip” utilities.
The control script executed the build process for each project sequentially. For every

project, an appropriate build command was run, corresponding to the project’s build tool –
see Table 3.1, column “Build command”. Their general goal is to produce a runnable Java
archive from source files. The underlying idea is that a developer should be able to execute
the corresponding command on any project using the given build tool, without reading and
following any complicated instructions or modifying the project’s files, and the build output
should be generated successfully. In cases when the build tool enables exclusion of tests
via command-line arguments, we utilized it, since the output archive can be generated and
software can be often successfully executed even if tests fail.

During each build process execution, both standard and error output streams of a build
process were redirected to a log file. The exit code of the process was recorded: a non-zero
exit code signifies failure (or timeout). The execution time of one build was limited to one
hour. This was necessary since we encountered infinite builds during pilot runs. The project
data – exit codes and auxiliary metrics like the number of files in source archives – were
stored in a CSV (comma-separated values) file for further analysis.

3.2.2 Results
In total, 72.64% of 10,000 projects have a recognized buildfile in its root directory. The most
popular tool is Maven – see Figure 3.2.

Among other findings, 8.54% of projects contained such buildfile in a non-root directory.
Since Ant does not provide dependency resolution capabilities itself, we were interested in
how many projects using it also utilize the dependency manager Ivy. The number is relatively
low: 10.18%.

In Figure 3.3, we see that 38.05% of builds failed. This means in almost 4 of 10 cases,
the programmer would not be able to produce a target archive from the source code without
manual intervention.

A negligible part of builds did not meet the time requirement. Some of the reasons are
lengthy dependency resolution and downloading, and expecting user input.

5http://www.docker.com

16

http://quay.io/sulir/builds
http://www.docker.com

3.3. Build Error Types

Ant (8.25%)

Gradle (11.13%)

Maven (53.26%)

no/undetected (27.36%)

Figure 3.2: Recognized build tools

failure (38.05%)

success (61.87%)

timeout (0.08%)

Figure 3.3: Build success vs. failure

3.3 Build Error Types
In this section, we will analyze the reasons of the mentioned failures.

3.3.1 Method

To determine the kind of failure, the logs were searched for the presence of certain patterns.
Since each build tool has its own log format, first we associated a buildtool-dependent,
machine-readable error type with each log (e.g., “MojoFailure:maven-compiler-plugin”). This
process was automated. Second, a significant portion of error types was manually grouped
into tool-independent, human-readable categories (e.g, “Java compilation”).

Maven

A failing build is caused by a thrown Java exception, which is present in the log. Therefore,
we decided to use exception class names as a Maven error types, with the “Exception” suffix
removed for brevity.

However, the exception can be chained. For example, a LifecycleExecutionException

can be caused by a CompilationFailureException, which can be caused by another one,
etc. Fortunately, Maven logs contain a URL of a web page describing the relevant exception.
We extracted the exception class name from this URL. In cases when multiple URLs were
present, we extracted the class name from the last URL since it usually contained the most
specific exception.

Some exception class types, e.g. MojoExecutionException, are too vague. In such cases,
we searched for a presence of the pattern “Failed to execute goal. . . ” and extracted the Maven
plugin name which caused the failure, for instance, maven-javadoc-plugin. We then labeled
the project with an error type in the form of “ExceptionClass:plugin-name” (see Table 3.2 for
examples).

17

3. BUILDABILITY OF SOFTWARE SYSTEMS

Gradle

For Gradle, the thrown exception class was considered too. Since Gradle does not include a
URL in its logs like Maven, we analyzed the printed Java exception ourselves. The situation
was more complicated because Gradle sometimes utilizes multi-cause exceptions, when one
exception is caused by more than one other exceptions, forming “exception trees”. Assigning
multiple error types to one build would unnecessarily complicate further analysis. Therefore,
after a manual inspection of a subset of Gradle logs, we decided to use the following method
to find the most relevant exception: If it was a simple (unchained) exception, it was selected.
Otherwise, the first most direct cause of the root exception was selected. For example, in the
exception tree “A caused by B and C (caused by D)”, we selected the exception B.

Two exception classes were too vague, so we enriched the error type with the name of the
failed task in these cases. Finally, for the PluginApplicationException, the failing plugin
name was appended.

Ant

Since Ant throws the same exception (BuildException) for all possible build failure reasons,
it is useless for error classification. However, Ant prints names of individual targets as it
executes them. Therefore, we were able to extract the last executed target – i.e., the failing
one. The error type is in the form “Target:target-name” in this case. If the build failed before
even one target was started, we analyzed the log for a presence of frequently occurring natural
language patterns, determined by a manual inspection of the remaining logs.

Categorization of Error Types

In total, there were 292 different error types. Our goal was to categorize them, using human-
readable names. Since this process was performed manually and the number of error types
was large, we decided to categorize only more frequently occurring error types. While just 84
error types were categorized, they represented more than 86.5% of build failures.

The categorization was performed by one of the authors. He discussed the documentation,
inspected sample logs, and searched web forums to seek help with the categorization. When
he was unsure, he left the error type uncategorized.

3.3.2 Results
First, we will present error types for individual build tools. Next, a overview of error categories
will be presented.

3.3.3 Error Types
The most frequently occurring Maven error types are displayed in Table 3.2. A very large
portion of Maven builds ends with the “DependencyResolution” error. This includes temporary
and permanent network problems of the servers hosting the dependencies, authorization errors,
missing files on servers due to reasons like discontinued dependency hosting or removed older
versions, invalid POM files, and many others.

For the most frequent Gradle error types, see Table 3.3. At the top, there is a “Compila-
tionFailed” error which includes traditional Java compilation errors like undefined symbols,
missing packages, incompatible types, etc.

Table 3.4 displays Ant error types. The most frequently failing target is “compile”.

18

Table 3.2: The most frequent Maven error types

Error type %

DependencyResolution 39.11
MojoFailure:maven-compiler-plugin 18.16
UnresolvableModel 10.59
MojoExecution:maven-javadoc-plugin 8.17
ProjectBuilding 2.47
PluginResolution 2.41
MojoExecution:git-commit-id-plugin 1.70
PluginManager 1.65
MojoExecution:maven-antrun-plugin 1.37
MojoExecution:exec-maven-plugin 1.10
MojoExecution:maven-enforcer-plugin 1.04
AetherClassNotFound 0.77

Table 3.3: The most frequent Gradle error types

Error type %

CompilationFailed 22.36
MissingProperty 11.59
PluginApplication:ShadowJavaPlugin 7.66
Gradle:javadoc 5.59
InvalidUserData 5.18
ModuleVersionNotFound 3.93
Exec 3.52
ModuleVersionResolve 3.52
Resolve 2.69
IllegalArgument 2.48
CustomMessageMissingMethod 2.07
MultipleCompilationErrors 1.86

Table 3.4: The most frequent Ant error types

Error type %

Target:compile 21.83
CannotImport 17.03
Target:-do-compile 12.23
Target:build 3.28
Target:build-project 2.84
unknown 2.84
Target:compile-import-shared 2.62
Target:-init-check 1.75
Target:jar 1.75
MissingPath 1.53
Target:-do-init 1.53
TaskdefNotFound 1.31

19

3. BUILDABILITY OF SOFTWARE SYSTEMS

non−Java compilation 0.7%

wrong JDK version 0.8%

buildfile parsing/compilation 1.2%

other build tool integration 1.6%

packaging 1.8%

version control integration 1.9%

external program execution 2.4%

file not found 3.7%

configuration 4.7%

documentation generation 6.4%

Java compilation 22.1%

dependencies 39.2%

Failure by category [%]

0 10 20 30 40

Figure 3.4: Build error categories

3.3.4 Error Categories
Error categories combined for all build tools are shown in Figure 3.4. Notably the largest
portion of builds are dependency-related (39.2%). This is caused by Maven builds to a
large degree – more than a half of failed Maven builds end with various dependency-related
exceptions.

Compilation of Java source code caused 22.1% of failures. Note that some compilation
failures might be a consequence of missing dependencies [224].

Surprisingly, 6.4% of failures occurred during documentation generation. Some builds
failed because of missing or invalid configuration properties (4.7%) and missing files or
directories (3.7%).

3.4 Relation of Build Results to Project Properties
We hypothesize there is some form of association between the build result of a project and
its properties. Specifically, we consider the project’s build tool, size, popularity, age and last
update recency.

The hypotheses are formulated as follows:
H3.1 The probability that a build fails depends on the build tool which the project uses.
H3.2 Builds of larger projects fail more likely than that of smaller ones. Project size was

measured by a file count, as suggested by McIntosh et al. [157].
H3.3 Failing project are less popular, in terms of “stars” received on GitHub.
H3.4 Older projects, considering creation dates, fail more likely.
H3.5 More recently updated projects have a higher probability of a passing build.

3.4.1 Method
The build status is a nominal variable with two possible values: “pass” and “fail”. The build
tool is a nominal variable, while all other project properties are numeric (interval).

To be usable in statistical tests, dates must be converted to numeric values. We decided to
use relative measures for readability reasons. Project age was measured as a number of days

20

3.4. Relation of Build Results to Project Properties

Ant

Gradle

Maven
success

failure

0% 25% 50% 75% 100%

Figure 3.5: Build status for individual build tools

0
1
0
0

2
0
0

3
0
0

4
0
0

passed vs. failed

file count

0
5

1
0

1
5

2
0

passed vs. failed

stars

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

passed vs. failed

age [days]

0
5
0
0

1
0
0
0

1
5
0
0

passed vs. failed

last update [days]

Figure 3.6: Beanplots (distributions+medians) of project characteristics

between the creation date of a particular project and of the newest project. A similar measure
was used for recency – using the “last updated” dates.

To determine whether the dependence of the build status and build tool is statistically
significant, we used the Pearson’s chi-squared test. To assess the dependence of build status
and all other properties, a two-sided Mann-Whithey U test was performed. A confidence level
of 99% was used (p-value should be < 0.01).

3.4.2 Results

The chart of projects’ build status for each build tool is in Figure 3.5. Maven builds tend to
be the most successful (65.8%), while Ant fails the most often (44.4% success rate). The
differences are statistically significant (p-value < 0.0001), confirming H3.1. Cramér’s V is
0.146, which means small to medium effect size.

In Figure 3.6, there are four beanplots depicting distributions and medians (horizontal
lines) of file count, star count, age and update recency for projects with passed (left side)
vs. failed (right side) builds. Outliers were trimmed from the display, but preserved in
calculations.

Projects with a successful build had a median of 70 source files, while this number was
101 for the failing ones (a 44% difference). This is natural – larger projects are usually more
complex and thus more error-prone. The result is statistically significant, with a p-value of
less than 0.0001, so H3.2 is accepted.

21

3. BUILDABILITY OF SOFTWARE SYSTEMS

There is a difference in the number of “stars” for the two groups – a median of 3 vs. 2.
The difference is not statistically significant (p = 0.0226).

When considering dates of creation (H3.4), there is ~17% difference of age between
passing (median ~722 days) and failing (841 days) builds. For a date of last update (H3.5),
the situation is similar, but the difference is more striking: 174 vs. 312, i.e, a difference of
79%. Both results are statistically significant (p < 0.0001). A possible explanation is that
build scripts require maintenance – even if the project is untouched – to deal with changes in
build tools themselves. After inspecting the results for individual build tools, Maven builds
showed the largest difference.

Note that this is only an association study – it does not mean that simply selecting Maven
will make your project less prone to build failures. There may be complex relationships
among multiple factors. For example, Ant projects tend to be older and slightly larger than
other.

3.5 Discussion
Some portion of the failed projects could be buildable if we manually read the README file
and followed the instructions provided. We argue that automated builds are not fully automated
if they require a programmer to manually download dependencies, edit configuration files or
perform other steps.

Nevertheless, we tried to manually download and build 3 random failing projects, using
instructions provided in the README files (if present). If errors occurred anyway, we tried
to correct them.

The first build failed even after we followed the instructions. It was successfully build
only after we downgraded Gradle – the build system itself – from version 2.14 to 2.10. This
shows that some projects require specific older versions of tools. An interesting fact is that
the project was last updated less than a year before the study execution, so the “project rot”
can occur quite fast.

The second project, with a name ending with “-core”, failed because of a missing JAR file.
This file could be produced by manually downloading and building a related “-utils” project.
In README, there was only a brief mention that the project depends on the “utils” package.
It is questionable why automated dependency management was not used, since both projects
were using Maven, which has a built-in support for this.

The third project did not mention any building instructions in its README. Its build
failed because a “snapshot” version of a third-party dependency was used. This version was
probably available in the Maven repository in the past, but now it is not. After we corrected
the version to a final one in the Maven POM file, a compilation error “package does not exist”
occurred because of another missing dependency, unrelated to the previous one. Although we
were trying to edit the POM file to download this dependency, builds were always failing with
various download errors. We even tried downloading necessary JARs manually, but without
success.

3.6 Threats to Validity
First, our results are valid only for the presented project selection criteria. Further studies
should extend the criteria, particularly to include Android applications/libraries, which are
becoming increasingly popular. Furthermore, about 80% of GitHub repositories do not

22

3.7. Related Work

contain a license file6 – including them could affect the results. Since analyzing GitHub alone
has its disadvantages [106], we could also explore software forges other than GitHub.

The project’s primary programming language was determined using the GitHub API,
which uses a mapping of file extensions to languages, and returns a language in which the
most bytes are written. This means the projects could utilize also other languages. However,
we consider the presence of a Java build script in the project root directory a sign that the
project (or its Java part) is buildable using Java tools. Furthermore, we excluded projects
using JNI (although exclusion patterns for Android and JNI might not be faultless). Finally,
only 2.4% of failures were caused by external program execution, and even only some portion
of them were because of an absence of a specific tool.

The selection of tools in our virtual environment might not represent a typical developer’s
setup. Nevertheless, they represent a minimal toolchain to download further tools and libraries
as dependencies if necessary.

For Gradle and Maven, tests were excluded from the build process. For Ant, there is no
command-line switch available for test exclusion, so they could potentially run. Our goal was
that a single, universal command should be executed, which should just produce an output
archive, without performing other activities like testing and deployment. The ad-hoc nature
of Ant makes it difficult, so we resorted to the nearest behavior possible – similar to what a
real developer could do without modifying build scripts. Overall, less than 0.4% of failures
are test-related, which makes this threat negligible.

Some build tools cache downloaded dependencies. Our script does not clean the cache
directories between individual builds. While this could in theory decrease internal validity,
external validity is strengthened – the programmer does not clean them often either.

Not all error types were categorized, so there may exist other categories, and the actual
percentages of existing ones can slightly differ. However, 86.5% of failed builds correspond
to categorized error types. A similar approach was used by Seo et al. [224] – they covered
about 90% of their dataset.

Since Ant target names are generally free-form, they might not be the best categorization
criterion. Using a custom logger, like in [156], we could extract task names to obtain more
precise results.

Although categorization of error types was performed manually and solely by one re-
searcher, this study is fully replicable and the analytical part is fully reproducible. The
Docker image, scripts for analysis, and other materials are available at http://sulir.github.io/
build-study.

3.7 Related Work
In this section, we will review some works related to build systems, with a focus on failure
analysis.

Kerzazi et al. [112] found that 18% of automated builds of an industrial web application
failed during a period of 6 months. In an exploratory study by Neitsch et al. [175], 4 of the 5
selected multilanguage Ubuntu packages could not be built or rebuilt without intervention.
While these studies thoroughly investigated a small number of systems, our study takes a
quantitative approach: it encompassed over 7,000 various projects.

A study [224] conducted at Google showed that 30% of developers’ Java builds executed
on a centralized build server failed. In contrast to our study, they used own proprietary

6http://github.com/blog/1964-open-source-license-usage-on-github-com

23

http://sulir.github.io/build-study
http://sulir.github.io/build-study
http://github.com/blog/1964-open-source-license-usage-on-github-com

3. BUILDABILITY OF SOFTWARE SYSTEMS

build system, analyzed only compiler messages instead of full build system logs, and studied
multiple builds of the same systems over time.

According to Beller et al. [21], 59% of broken builds on a continuous integration server
Travis CI were caused by a test failure. Our study complements these results by examining
failure reasons other than unsuccessful tests.

Vasilescu et al. [272] described association of various project characteristics with the
success of their build. They analyzed existing builds on a continuous integration server, while
we created a virtual environment simulating a developer’s local system.

McIntosh et al. [157] performed a study of build systems on a large number of projects.
Some of their findings are consistent with ours – for example, that Maven requires the largest
build maintenance effort. They were not interested in build successes and failures, though.

Among other characteristics, McIntosh et al. [156] studied the build-time length of open
source projects. However, success/failure rates and failure reasons were not presented.

In a study by Hochstein and Jiao [92], 11% of regression test failures were due to failed
builds. They investigated only one project, though.

3.8 Conclusion
In a virtual environment containing programming tools, we tried to automatically build more
than 7,000 Java projects from GitHub, corresponding to the selection criteria. Answering
RQ3.1, more than 38% of these projects failed to build. Regarding RQ3.2, the most frequent
errors were dependency-related, followed by Java compilation and documentation generation.
To answer RQ3.3, the likelihood of a build failure is associated with the build tool used; we
also found that larger, older and less recently updated projects fail more.

Regarding the methodology, we presented an example of a simulation study in software
engineering. In real life, we observed interesting behavior on a small number of projects.
In a virtual environment, we tried to simulate the behavior which would be performed by
programmers (i.e., building the projects) on a large sample and observed the outcomes.

While we did not study closed-source industrial systems themselves, they are also affected
by this study since they often incorporate open source libraries in various ways.

3.9 Future Work
Especially for novices, error messages are often unreadable [151]. By determining what
build error messages are the most common, we can focus on making them more programmer-
friendly. For example, we can break a frequently occurring generic message into multiple
specific ones.

External dependency management causes both maintenance effort [157] and build failures.
Creating a system automatically generating and updating a build configuration by analyzing
libraries in the source code would be useful.

Although we manifested the severity of build failures, we did not provide much guid-
ance how to avoid them. It would be very useful to create a list of recommendations for
programmers and build maintainers.

Researchers are welcome to perform further empirical studies using our images and
scripts (http://sulir.github.io/build-study). Extending the scope to C, C++ and other languages,
performing a longitudinal study – analyzing the history of successful and broken builds over
time, or measuring build/rebuild time are only a few interesting future research directions.

24

http://sulir.github.io/build-study

Chapter 4

Labeling Source Code with Metadata

Often a developer needs to understand the program when looking at its source code, but the
critical information he seeks is not present in the code. Consider the following examples.

A small, but tricky piece of code worked a few days ago, but now it does not. The
programmer must open a web browser, navigate to the version control system (VCS) website
and find the relevant commit. It refers to the issue tracking system, which is a separate
website. After reading the whole, particularly long issue description and a multitude of related
comments, he finally finds the reason of the malfunction.

Another programmer tries to comprehend a rather complicated algorithm. It is difficult
to understand it just by looking at the code, so she decides to provide sample input data and
debug the program using a built-in debugger of an IDE (Integrated Development Environment).
While it is possible to display a value of any variable at any time, the debugger does not
present any overview of values of a particular variable over time. Each time a program stops,
the programmer must remember a value of interest and compare it with previous values in
mind. As the capacity of short-term memory is very limited, the developer soon starts writing
notes in a separate document. This in turn creates a burden of switching between two separate
views (a split-attention effect [20]).

These two – at the first glance unrelated – scenarios have something in common: The
information a developer needed was available sometimes or somewhere. But it was not
available in the right place at the right time: in the IDE, and associated with the particular
piece of code the developer was looking at.

Many researchers have realized this problem and provided various approaches, methods
and tools to partially solve some of its aspects. However, as the research in this area is not
very mature, authors use a rather large variety of terms to describe them. For this reason, we
decide to provide an overview of existing approaches.

In this chapter1, we will provide a preliminary systematic mapping study of selected
existing approaches to label parts of source code with additional metadata with the purpose of
program comprehension improvement. The sample of articles is categorized by four criteria,
which form a taxonomy.

Our general research questions for this survey are:
RQ4.1 What approaches (and tools implementing them) do exist to label parts of source

1The content of this chapter was published in our article [254].

25

4. LABELING SOURCE CODE WITH METADATA

code with additional metadata and present them to a programmer in order to improve program
comprehension?

RQ4.2 How can these approaches be categorized?

4.1 Method
We decided to conduct a systematic mapping study, which is a form of a systematic literature
review (SLR). In contrast to an SLR, a mapping study has more general research questions
[190] and the main goal is to classify research to categories, rather than provide precise
quantitative results [117].

4.1.1 Search Strategy
Since our view of literature through a notion of “source code labeling” is not very common
and the terminology is inconsistent, we decided to try multiple different search strategies and
combine their results.

Manual Search

First, we performed a manual search among all articles published in 8 journals and 4 confer-
ences, selected by the authors’ discretion (partially inspired by a list in [228]). In this first
part of the search process, arbitrary two years (2009 and 2012 in our case) were selected, as
suggested by [286]. The journals of interest were:

• IEEE Transactions on Software Engineering (TSE),
• ACM Transactions on Software Engineering and Methodology (TOSEM),
• Computer Languages, Systems and Structures (COMLAN),
• Science of Computer Programming (SCP),
• Journal of Systems and Software (JSS),
• Empirical Software Engineering (ESE),
• Information and Software Technology (IST),
• Journal of Software: Evolution and Process (JSEP), formerly known as Journal of

Software Maintenance and Evolution (JSME),
and conferences:

• International Conference on Software Engineering (ICSE),
• International Conference on Program Comprehension (ICPC),
• Working Conference on Reverse Engineering (WCRE)
• and International Conference on Software Maintenance (ICSM).
A Scopus2 query was constructed based on the criteria, the results list was exported as a

CSV file and inspected in a spreadsheet processing program. A total of 1546 articles were
manually assessed based on titles and abstracts, resulting in a list of 16 relevant articles.

Keyword Search

Continuing the methodology of Zhang et al. [286], we inspected the terminology used in
articles obtained during the manual search and based on it, we constructed and tried multiple
keyword-based search queries. The final Scopus query is as follows:

2http://www.scopus.com

26

4.1. Method

TITLE-ABS-KEY(

("source code" OR "program comprehension")

AND ("tagging" OR "enriching" OR "augmenting" OR "labeling")

) AND SUBJAREA(COMP)

AND NOT SUBJAREA(bioc OR medi OR envi OR neur)

Basically, it searches the specified terms in titles, abstracts and keywords of computer
science literature, excluding interdisciplinary research. The search yielded 85 results, of
which 6 were newly found relevant ones.

The methodology by Zhang et al. [286] prescribes trying slightly different queries until
one of them returns at least 80% of articles from the first (manual) phase. For the query
presented above, this number was far below 20%. Broadening the terms caused the count of
results to skyrocket. The number of false positives was high, without a significant positive
impact on the relevant result count. For this reason, we decided to leave the methodology and
continue with other techniques.

References Search

We searched for all forward and backward references of 22 articles collected so far. Again,
we used Scopus.

Backward references mean all articles cited in the “References” section of particular
papers. They are generally older than the article citing them. From 305 results, we considered
14 unique and relevant.

Forward references are articles for which a search engine knows they cite a particular
paper. This is useful to find newer articles. Of 137 results, 3 were relevant and not yet found
in previous searches.

Other Sources

Five more relevant articles were found recursively in the references of articles found during
the phase of references search. Finally, we added three more papers present in the authors’
personal bibliography.

4.1.2 Inclusion Criteria
During the selection process, a paper was considered relevant if:

• it presented a new approach or tool to associate metadata with pieces of source code,
• the purpose of these metadata was to improve program comprehension
• and a form of presentation of these data to a programmer was described.

Examples of excluded articles are papers describing a labeling algorithm without discussing
how to present results to developers, and purely empirical studies comparing existing ap-
proaches.

4.1.3 Final Article List
From the 47 selected articles, 17 were just descriptions of the same or similar idea in another
research phase. Five were considered irrelevant after skimming or reading the full text.

The final article list thus contains 25 articles. For an overview, see Table 4.2. Further
details will be provided in section 4.3.

27

4. LABELING SOURCE CODE WITH METADATA

Table 4.1: Source code labeling taxonomy

Dimension Attribute Description

Source human Manually entered information, previously present only in hu-
man mind.

code Results of static source code analysis.
runtime Results of the program execution; dynamic program analysis.
interaction Interaction patterns of a single developer in the IDE.
collaboration Collaboration artifacts of multiple developers like VCS com-

mits or e-mails.

Target folder A directory or a package.
file A file or a class.
multi-line A multi-line part of a file, e.g., a method.
line One line in a file, such as a variable declaration.
line part A character range, e.g., a method call.

Presentation code view The editable source code view is augmented with metadata.
existing view Other existing views in an IDE (e.g., a package explorer) are

augmented.
separate view A separate view is created just to present the information of

interest.

Persistence internal The metadata is stored directly in the source code file (e.g.,
using a comment).

external A separate file, database or server is used to store the labels.
none/unknown The metadata are only presented to the user, but not stored; or

a method of persistence was not mentioned in the article.

4.1.4 Data Extraction
The full text of 25 relevant articles was read, carefully watching for similar and distinguishing
signs regarding source code labeling. Succinct notes about each article were written in a
tabular form, gradually forming a taxonomy.

4.2 Taxonomy
First, we will introduce our taxonomy, answering RQ4.2. Similar to Dit et al. [59], articles
(approaches) were evaluated according to multiple criteria, called dimensions. For each
dimension, an article can belong to one or more attributes.

Our taxonomy has four dimensions: source, target, presentation and persistence. For an
overview, see Table 4.1. Now we will describe the dimensions and attributes in detail.

4.2.1 Source
A “source” dimension denotes where the metadata were originally available before they were
assigned to a part of source code. The most problematic source is human mind. In order to
obtain information present only in the memory of the programmer, he must manually enter
these data into a system for each artifact which should be labeled. The most primitive kind of
a label with a “source” of type human is a traditional source code comment. The developer
writes the label – a natural language text easing program comprehension – above a piece

28

4.2. Taxonomy

of code. The assignment of the comment to a piece of code is therefore performed by its
positioning.

Approaches categorized as code analyze the source code of a system without executing it,
i.e., using static analysis.

Useful metadata can be collected by execution of the program, using some form of
dynamic analysis. These approaches are marked as runtime. The analyzed program must be
buildable (which is often a problem [251]) and automated tests should be available (or the
program must be executed manually).

For tools utilizing the human source, a programmer must purposefully enter the metadata
with a sole intention that they will improve program comprehension. This is expensive on
human resources. On the other hand, interaction data are collected automatically, possibly
without the developer even knowing it (although that would be unethical). Using heuristics,
these tools can infer relationships between artifacts from captured keystrokes, mouse actions,
or even eye gazes [275].

As software engineering is not an individual activity, collaboration artifacts are formed
naturally as the team communicates and collaborates. These artifacts include e-mails, instant
messages, forum posts and VCS commit messages. These artifacts are often poorly or nowise
connected with the relevant source code. The purpose of collaboration approaches to code
labeling is to fill this gap.

Many tools use a combination of multiple methods. For example, a static analysis may be
used to assign source code artifacts their documentation; then a user must manually confirm
or reject the suggested links [16].

4.2.2 Target
The purpose of source code labeling is to assign metadata to a particular piece of code. Subject
of the “target” dimension is what that “piece of code” means.

This is quite a problematic question, as there are two separate views: file-based and
element-based. Some tools assign metadata to files, lines and character ranges. Other assign
them to classes, methods, variables, method calls, etc. These views are often mixed in one
tool. Furthermore, it is not clear whether a code bookmark, labeling a line containing just a
variable declaration, relates to the line or to the declaration. Therefore, we decided to mix the
views in our taxonomy.

The attributes are sorted according to granularity. A folder represents a package in some
object-oriented languages. A file often corresponds to a whole class. Method and function
definitions are multi-line elements. Elements considered line include variable declarations.
We decided to consider method calls and variable usages line parts.

4.2.3 Presentation
Once the metadata were retrieved and associated with a proper source code segment, it should
be presented to the developer in order to be useful.

One of the best places to show code-related data is obviously the main, editable source
code view of an IDE. This is the place which draws the most attention of a programmer,
occupies a large screen portion and offers many existing features (e.g., code completion). The
code editor can be augmented by various coloring, visual overlays (like a box surrounding
a piece of code) or images. Harward et al. [88] call them “in situ” visualizations. Syntax
highlighting may be considered a common visual augmentation [262]. We decided to regard

29

4. LABELING SOURCE CODE WITH METADATA

also gutter/ruler annotations (icons in the left or right code editor margin) as a code view
presentation.

Except for the source code editor, modern IDEs offer various supplemental views like
Package Explorer, Favorites or Class Hierarchy. Plugins can augment existing views by
additional information. For instance, packages and classes in a tree view may be augmented
by colored squares according to a metric [212].

Some tools, despite associating a part of code with additional information, display the
association in a separate view, or even window. In a better case, clicking a particular widget
in this view automatically opens and focuses the code of interest in the source code editor.
Otherwise, the user must manually open and find the code according to the displayed element
name.

4.2.4 Persistence
The association between the code and the label, and sometimes also the label data themselves,
can be saved to a permanent storage.

Rationale

There are three possible reasons for persistence.
First, in the case of fully automated static code and collaboration-sourced techniques, the

process of retrieving and associating metadata can be resource-intensive. The storage acts as
a cache3.

Second, the runtime and interaction data are partially a product of human work. Each
program execution and IDE interaction can be unique. It is therefore desirable to save at least
the data like traces or interaction logs. Once they are persisted, the analysis and association
process can be performed every time when necessary.

Third, the persistence is an absolute requirement in the case of human-sourced metadata.
A tool must not repeatedly ask a programmer to describe code, if exactly the same information
had already been entered for the same piece of code, using the same tool.

Persistence Methods

The labels can be stored in a source code file itself. The association with the target element
is thus implicit through the position of the label in the code. A typical example of internal
persistence method is a specially formatted comment.

External persistence means labels are stored separately from the source code file. They
can be saved in an XML file, or a database management system (DBMS), accessed either
locally or through a server.

Finally, the persistence method none/unknown denotes the labels are either not stored
permanently, or persistence was not mentioned in a given article at all. If a tool produces only
reports or exports which cannot be subsequently loaded, it was also incorporated into this
category.

3Suppose collaboration artifacts are already persisted in external systems.

30

4.3. Approaches and Tools

Table 4.2: Labeling approaches and tools

Article
Source Target Presentation Persistence

hu
m

an

co
de

ru
nt

im
e

in
te

ra
ct

io
n

co
lla

bo
ra

tio
n

fo
ld

er

fil
e

m
ul

ti-
lin

e

lin
e

lin
e

pa
rt

co
de

vi
ew

ex
is

tin
g

vi
ew

se
pa

ra
te

vi
ew

in
te

rn
al

ex
te

rn
al

no
ne

/u
nk

no
w

n

ConcernMapper [208] � � � � � � � � � � � � � � � �

eMoose [56] � � � � � � � � � � � � � � � �

Pollicino [85] � � � � � � � � � � � � � � � �

SE-Editor [222] � � � � � � � � � � � � � � � �

Spotlight [205] � � � � � � � � � � � � � � � �

TagSEA [241] � � � � � � � � � � � � � � � �

DepDigger [23] � � � � � � � � � � � � � � � �

RegViz [18] � � � � � � � � � � � � � � � �

Stacksplorer [109] � � � � � � � � � � � � � � � �

Traceclipse [118] � � � � � � � � � � � � � � � �

TraceME [16] � � � � � � � � � � � � � � � �

GUITA [220] � � � � � � � � � � � � � � � �

Impromptu HUD [262] � � � � � � � � � � � � � � � �

in situ profiler [20] � � � � � � � � � � � � � � � �

Senseo [212] � � � � � � � � � � � � � � � �

sparklines [19] � � � � � � � � � � � � � � � �

CnP [97] � � � � � � � � � � � � � � � �

HeatMaps [213] � � � � � � � � � � � � � � � �

iTrace [275] � � � � � � � � � � � � � � � �

Deep Intellisense [94] � � � � � � � � � � � � � � � �

Miler [9] � � � � � � � � � � � � � � � �

Rationalizer [31] � � � � � � � � � � � � � � � �

101companies [67] � � � � � � � � � � � � � � � �

Code Bubbles [32] � � � � � � � � � � � � � � � �

CoderChrome [88] � � � � � � � � � � � � � � � �

4.3 Approaches and Tools
In Table 4.2, we can see an overview of all reviewed approaches and tools, which answers
RQ4.1. Now we will briefly describe each of them. The approaches will be grouped by their
primary “source”.

4.3.1 Human
A concern is a piece of information about a code element, such as a feature it implements or a
design decision [247]. ConcernMapper [208] is both an Eclipse plugin and a framework to
associate parts of programs with concerns, both through a GUI (graphical user interface) and
an API (application programming interface).

The eMoose approach [56] allows tagging of API usage directives, like state restrictions

31

4. LABELING SOURCE CODE WITH METADATA

or locking, in JavaDoc comments. Subsequent highlighting of calls to such methods in an
IDE improves awareness of programmers, who then spot errors quickly.

Pollicino [85] is a plugin for collective code bookmarks, providing a more feature-rich
version of classical source code bookmarks found in the majority of IDEs.

SE-Editor [222] makes it possible to embed web pages in the source code editor of the
Eclipse IDE. The web page is embedded using a comment beginning with /***, followed by
an URL. This might be useful to display code-related diagrams, tutorial videos, etc.

Spotlight [205] is an IDE plugin to tag source code with concerns. Each concern can be
assigned a color, which is then displayed in the left gutter (margin) of the source code editor.
Thanks to this, a programmer can more easily identify where the given concern is located in
the program.

TagSEA [241] integrates waypoints and social tagging into the Eclipse IDE. Programmers
note waypoints – places worth marking and sharing – into the source code as comments in
the form //@tag tagname : message. Hierarchical tags and metadata (author, date) are
also supported. Collections of waypoints can be connected into routes to create source code
guides.

4.3.2 Code
DepDigger [23] visualizes the measure (metric) dep-degree by changing the background color
of source code elements – on a scale ranging from white to red – in a code view.

RegViz [18] visually augments a regular expression in-place, without a need for a separate
view. For example, groups are underlined and labeled with a group number.

Stacksplorer [109] visualizes method’s callers in a column on the left of the code editor
view, callees in the right one. Graphical overlays may be shown to visually connect the current
method definition with the left column and method calls in the source code view to items in
the right column.

Traceclipse [118] and TraceME [16] are traceability management recovery tools. They
link source artifacts (like documentation) to the target artifacts (usually source code). In the
mentioned tools, the linking is performed based on the textual similarity, using IR (information
retrieval) methods.

4.3.3 Runtime
GUITA [220] annotates GUI-related method calls with GUI snapshots of a selected widget at
the time when this method is called. This facilitates the navigation between the dynamic user
interface world and the static source code world.

The next three approaches belong to a group of “in situ visualizations” – small graphical
elements displayed directly in the source code editor. Impromptu HUD [262] displays a
realtime clock-like visual near each scheduled function, informing the programmer when the
timing event will fire. An in-situ profiler [20] shows small diagrams with runtime performance
information next to method declarations and calls. Code sparklines [19] are small charts
depicting values of a particular numeric variable over time.

Senseo [212] gathers and displays dynamic information in static views of an IDE. In-
formation like methods’ callers, callees, dynamic (overridden) argument types and return
values are shown in a tooltip of a method in the code view. Selected metrics like execution
frequencies, object allocation counts or memory consumption can be viewed in gutters/rulers
(using heatmaps) and the package explorer (numbers). Dynamic collaborators of packages,
classes and methods, and a Calling Context Ring Chart are displayed in a separate view. A

32

4.3. Approaches and Tools

controlled experiment demonstrated an improvement of maintenance correctness and speed
when using Senseo [212].

4.3.4 Interaction
The CnP tool [97] proactively tracks, visualizes and supports editing of code clones in an IDE.
Instead of a batch input of source files, the tool captures copy and paste operations in Eclipse.

HeatMaps [213] display artifacts with a background color on a scale from blue to red,
according to various numeric values assigned to them. The values are, for example, the
recency and frequency of browsing and modification (obtained by instrumenting an IDE),
artifact age, and a version count. The blue color means “cold” (e.g, least recently browsed),
red “hot”. The approach is general and can be potentially applied in many tools and to various
views in an IDE.

Interaction-sourced approaches are not limited to traditional mouse and keyboard opera-
tions. iTrace [275] analyzes eye gazes (using an eye tracker) in an IDE to infer traceability
links between artifacts.

4.3.5 Collaboration
Deep Intellisense [94] displays an interleaved list of relevant bugs, commits, e-mails, specifi-
cations and other documents for a given code element. Furthermore, a list of related people is
shown. The lists are updated each time a user clicks on a code element, but they are displayed
in a separate view. Rationalizer [31] integrates similar information directly into the code
editor. On the right side of each source code line, it shows three columns: when this line was
last modified, who, and why changed it. On the other hand, it processes only data from a VCS
and an issue tracker.

Miler [9] is a toolset to retrieve, process and associate e-mail data to source code artifacts.
E-mails are assigned to a source code based on textual analysis. Information about e-mails
relevant to a class is displayed in the IDE’s package explorer and rulers.

4.3.6 Mixed Approaches
The following approaches use multiple sources of information, without any of them being
dominant.

101companies [67] is a software chrestomathy – a collection of many implementations
of one system using various technologies, stored in a repository and linked with metadata.
Metadata like an implementation language, dependence on a technology, features, and a
highlighting renderer are assigned to files or file fragments using a rule-based DSL (domain
specific language). The assignment can be performed according to criteria like a file extension,
a regular expression for file content, or even by a separate script [67]. For example, all classes
in files called “*.java”, ending with “Listener”, could be assigned the “observer design pattern”
label.

Code Bubbles [32] is a working-set based IDE using fragments called bubbles instead
of traditional file-based views. It supports various forms of labeling, ranging from arrows
between method calls and definitions, to small images (e.g., a literal “bug”) attachable to code
bubbles.

CoderChrome [88] provides a generic framework for mapping between a metric and an
in-situ augmentation. Examples of such visual augmentations are background colors, glyphs
at the beginning or end of lines, and underlining. Metrics can range from categorical to

33

4. LABELING SOURCE CODE WITH METADATA

numeric ones, e.g.: a start or end of a block, the last author, the property of having a primitive
type, the code age, and a line length.

4.4 Threats to Validity
The set of articles included in this study is by no means complete. Even during data extraction,
we found multiple possibly relevant papers which were not included in the study. Nevertheless,
due to a large number of papers pertaining to a research area, collecting all related articles
is often unrealistic and it is just important for the selected subset to be representative with
respect to the research field [190].

One could argue that the whole search process relies on one search resource – Scopus.
However, during backward references search, also papers not indexed by Scopus were returned
(so-called secondary documents in their terminology).

Article selection and data extraction was performed by a sole researcher, which could
produce biased results based on subjective decisions. Brereton et al. [34] suggest either
independent extraction by at least two researchers and then a comparison of results, or
checking the data afterwards. In case of the lack of resources, a random sample of data may
be cross-checked [117].

4.5 Related Work
Now we will mention works related to our review.

4.5.1 Other Labeling Forms
Artifacts other than source code can be labeled, too. One of such artifacts are execution traces.
An approach called UI traces [259] splits large lists of method calls into multiple smaller
ones, using UI (user interface) events. Each such fragment is labeled with an UI snapshot to
facilitate feature location.

4.5.2 Location Referencing
Tools using an external persistence must use some form of location referencing. Reiss [203]
compared various methods, e.g., storing an exact line content, context of a few lines around
the line, AST matching, a diff-based approach, and their combinations. An experiment was
performed, when automatic methods were compared to human judgment about which line
was changed to which one (or deleted). The performance (space to store the reference and
time) was also considered. A recommended method to track lines through changed versions
of code is based on an approximate string matching of the line and exact matching of the lines
around it.

A similar approach, using advanced string similarity algorithms, was described in [197].

4.5.3 Related Research Fields
The research area of feature location partially overlaps with source code labeling. Features
can be considered one of possible source code labels. Dit et al. [59] reviewed 89 feature
location techniques and classified them into a taxonomy. Our “source” dimension is similar to

34

4.6. Conclusion

their “type of analysis”; and “target” to “output”. On the other hand, we were more concerned
about the presentation and persistence.

The runtime source in our taxonomy indicates a use of various dynamic analysis ap-
proaches. Cornelissen et al. [47] reviewed 176 articles related to dynamic source code
analysis. However, labeling of source code with obtained information was out of scope of the
mentioned survey.

Source code labeling with the collaboration source seeks to improve workspace awareness
[238] – knowledge of the tasks and artifacts of others in a distributed software development
team.

The goal of traceability research [280] is to allow following links among various forms of
software artifacts. Often the target artifact is source code, just as in the case of source code
labeling. Two traceability tools, Traceclipse [118] and TraceME [16], were included in this
mapping study.

4.5.4 Terminology
The term “source code labeling” has multiple synonyms and near synonyms in the literature:

• source code tagging,
• augmenting,
• enriching,
• annotation
• and marking.

However, we decided to use the word “labeling” as the other ones are either too specific or
ambiguous. The term tagging [241] is used mainly for short, textual metadata. Augmenting
[20] and enriching [212] is usually concerned with visual presentation, using short-term
graphical markers. The term annotation is ambiguous as it refers both to visual annotations
[262] and attributes in a form of Java annotations [246]. Marking [85] presents navigation
cues like bookmarks.

4.6 Conclusion
In this systematic mapping study, 2,079 articles were assessed (including duplicates). 25
unique articles were considered relevant to the field of source code labeling. A taxonomy
containing four dimensions was created by the analysis of the articles.

The contribution of this work is threefold. Researchers can both get a quick overview
of many source code labeling approaches, and find interesting future research directions
by analyzing the gaps. IDE developers can use it as an inspiration about which features to
implement in their product. Practitioners struggling to analyze existing large codebases may
find information about available tools and approaches here.

Interesting observations can be made by looking at patterns in Table 4.2. For example, all
approaches using an in-code persistence use purely human source of information.

It is important to note that some of the approaches described here are already implemented
in industrial IDEs. Furthermore, there exist some features of commercial IDEs not described
here. It would be interesting to compare a set code labeling features of common IDEs and
academic tools.

35

Chapter 5

Manual and Runtime-Based Concern
Annotation

When programmers develop a program, they continuously create a mental model, which
is a representation of the program in their mind. They try to express the mental model
in the programming language constructions. However, not all parts of the mental model
are transferred into the source code and some details are lost. Later, during the program
maintenance phase, developers make a tremendous effort to recover such types of information
from the source code [130].

An important part of the mental model is a mapping from concerns to source code parts.
According to one of its most general definitions, a concern is “anything a stakeholder may
want to consider as a conceptual unit” [207]. In our work, we characterize a concern as a
developer’s intent of a particular piece of code: What should this code accomplish? How
would I tersely characterize it? Is there something special about it? Some concerns may
be obvious by looking at the code itself (chiefly from names of the identifiers), but many
concerns are hidden.

Since one piece of code can belong to multiple concerns [193], we cannot simply name
all classes and methods according to their concerns since one identifier can have only one
name. On the other hand, it is possible for a class or method in Java to have more than one
annotation (attribute in C#).

In his dissertation, Milan Nosál’ [181] advocates for the use of source code annotations to
implement the concern-to-code mapping. Such annotations are called concern annotations –
the main topic of this chapter1. For each distinct concern, he recommends to create one Java
annotation type. For example, we can create an annotation type @Persistence which tells
us the code marked with it fulfills the task of persistent storage of objects. Subsequently, in
our imaginary program, we could mark the methods like FileDialog.open(), Note.load(),
Note.save() and a class FileFormat with it. We will call them annotation occurrences. At
the same time, the first of the mentioned methods could be also annotated with the @GUI

concern, as it presents a GUI (graphical user interface) dialog to a user.

1This chapter contains material from our articles: [246], [247], [248], [252]. Milan Nosál’ contributed to
the design and execution of the experiments in sections 5.1 and 5.2, mainly by suggesting potential tasks and
questions. In section 5.4, we uses the results by Milan Nosál’ to compute the overlap between non-authors of the
source code.

37

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

Compared to traditional source code comments, concern annotations are more formal. We
can use standard IDE features like navigating to the declaration, usages searching, refactoring
and other on them. Concern annotations can have parameters to further specify their properties.
They may be also commented by natural language comments if needed.

M. Nosál’ [181] distinguishes three types of concern annotations:
• Domain annotations document concepts and features of the application (problem)

domain. For example, all source code elements representing the feature of filtering a
list of items can be marked with an annotation @Filtering. Similarly, all code related
to bibliographic citations could be annotated by @Citing. Domain annotations roughly
correspond to features, i.e. realizations of requirements which are visible in the program
and can be triggered by its end user [64].

• Design annotations document design and implementation decisions like design patterns,
e.g., @Observer.

• Maintenance annotations are intended to replace traditional TODO-like comments. An
example is the Unused annotation for parts of code not used in a project at all.

The first part of this chapter investigates the viability of annotations as a medium to share
parts of developers’ mental models by empirically testing the following hypothesis:

H5.1 The presence of concern annotations in the code improves program comprehension
and maintenance correctness, time and confidence.

Traditionally, concern annotations are inserted into source code manually, which is
expensive on human resources. In section 5.3, we will present a prototype tool which
annotates the program semi-automatically, using runtime information. This runtime-based
tool will be focused on domain annotations (features).

Finally, in section 5.4, we try to investigate how the semi-automatic annotation approach
compares to manual annotation. However, since our tool uses an existing (and rather old)
algorithm to compute the correspondence between code parts and concerns, it is not on
par with state-of-art feature location approaches [59]. Instead of regarding the manually
annotated code as a gold standard, we will expand the study of M. Nosál’ [181] who compared
the overlap between annotations of multiple people annotating the same code. He asked 7
participants to independently annotate the source code of EasyNotes2 – a small-scale desktop
application for bibliographic note-taking. None of the participants was an author of the
code. He found that only 28% of concern annotation occurrences in the code were shared
(overlapped) by at least two participants. Therefore, we ask the following research question:

RQ5.1 How does the overlap between semi-automatic and code author’s annotations
compare to the overlap among annotations of multiple non-authors?

5.1 The Effect of Annotations on Program Maintenance
First, we performed a controlled experiment to study the quantitative effect of the annotated
source code on program comprehension and maintenance.

The guidelines to perform software engineering experiments on human subjects [119]
were used. To present our findings, the experiment reporting guidelines [103] were followed.
We customized them to the specific needs of this experiment.

2http://github.com/MilanNosal/easy-notes

38

5.1. The Effect of Annotations on Program Maintenance

5.1.1 Hypotheses
We hypothesize that the presence of concern annotations in the source code improves program
comprehension and maintenance correctness, time and confidence. Thus we formulate the
null and alternative hypotheses:

H5.1corr, null: The correctness of the results of program comprehension and maintenance
tasks on an annotated project = the correctness on the same project without concern annota-
tions.

H5.1corr, alt: The correctness of the results of program comprehension and maintenance
tasks on an annotated project > the correctness on the same project without concern annota-
tions.

H5.1time, null: Time to complete program comprehension and maintenance tasks on an
annotated project = time to complete them on the same project without concern annotations.

H5.1time, alt: Time to complete program comprehension and maintenance tasks on an
annotated project < time to complete them the same project without concern annotations.

H5.1conf, null: Participants’ confidence of their answers to program comprehension ques-
tions on an annotated project = their confidence on the same project without concern annota-
tions.

H5.1conf, alt: Participants’ confidence of their answers to program comprehension ques-
tions on an annotated project > their confidence on the same project without concern annota-
tions.

We will statistically test the hypotheses with a confidence interval of 95% (α = 5%).

5.1.2 Variables
Now we will define independent variables, i.e., the factors we control, and dependent variables
– the outcomes we measure.

Independent Variables

There is only one independent variable – the presence of concern annotations in the project.
It has a nominal scale which means there is a finite number of possible values without any
meaningful ordering [282]. The levels (possible values) of this variable are: yes (“annotated”)
and no (“unannotated”).

Dependent Variables

The correctness was measured as a number of correct answers (or correctly performed tasks)
divided by the total number of tasks (5). The tasks are not weighted, each of them is worth
one point. The assessment is subjective – by a researcher.

The second dependent variable is the time to finish the tasks. Its scale is of a ratio type
since the ratio between two values is meaningful [282]. Although it was technically measured
with millisecond precision, we will use the unit “minutes” rounded to two decimal places in
subsequent analysis. We are interested mainly in the total time, i.e., a sum of times for all
tasks.

Instead of measuring just time alone, it is possible to define efficiency as a number of
correct tasks and questions divided by time. On one hand, efficiency depends on correctness,
which already is a dependent variable. On the other hand, efficiency can deal with participants
who fill the answers randomly to finish quickly [123]. We decided to use efficiency only as an

39

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

auxiliary metric to make sure that time differences are still significant even if the correctness
is considered.

For each comprehension question, we also asked a subject how confident (s)he was on a
3-point Likert scale: from Not at all (1) to Absolutely (3). Since we asked a subject about the
confidence equally for each task, we consider it meaningful to calculate the mean confidence,
which is the third dependent variable.

5.1.3 Experiment Design
Now we will describe the design of the experiment.

Materials

The study was performed on the EasyNotes project3. We prepared two different versions:
• with concern annotations created by other people
• and without annotations.
The first version was obtained by asking 7 participants to independently annotate the

source code of EasyNotes – a small-scale desktop application for bibliographic note-taking.
As the project was only scarcely commented, we deleted all traditional source code

comments from both versions to remove a potential confounding factor. Only comments for
the annotation types themselves were left intact, as we regard them as their integral part.

During this experiment, we used the NetBeans IDE.

Participants

We used 18 first-year master’s degree Computer Science students as participants. Carver et al.
[40] recommend to integrate software engineering experiments performed on students with
teaching goals. We decided to execute the experiment as a part of the Modeling and Generation
of Software Architectures course, which contained Java annotations in its curricula.

The course was attended by students focused not only on software engineering, but also
on other computer science subfields. Inclusion criteria were set to select mainly students with
a prospective future career as professional programmers. Additionally, as EasyNotes is a Java
project, a sufficient Java language knowledge was required.

The experiment was performed during three lessons in the same week – the first time
with four students, then 9 and finally with the remaining 5 students. Each session lasted
approximately 1.5 hours. The study was executed in a separate room, so the participants were
not disturbed.

Group Assignment

When assigning the subjects to groups, we applied a completely randomized design [282].
This means that each group received only one treatment – either an annotated or an unannotated
program – and the assignment was random. Each participant drew a piece of paper with
a number on it. Subjects with an odd number were assigned to the “annotated” group,
participants with an even number to the “unannotated” one. Our design was thus balanced,
with n=9 per group.

3http://github.com/MilanNosal/easy-notes

40

5.1. The Effect of Annotations on Program Maintenance

Instruments

To both guide the subjects and collect the data, we designed an interactive web form4. All
fields in the form were mandatory, so the participants could not skip any task.

We asked the subjects to install a NetBeans plugin, SSCE5. Although it is not its primary
feature, it provides an option to record programming sessions – time elapsed, a list of open
files and NetBeans windows gaining the focus. Just before the start of each task, a subject
clicked the button to start a new session, named after the task (e.g., “Filter”). Immediately
after the task was finished, (s)he clicked the button again to end the session. The collected
data were written to an XML file which the participants uploaded to the web form at the end
of the experiment.

5.1.4 Procedure
Now we will describe the experimental procedure.

Training

At the beginning of the experiment, the users were given 5 minutes to familiarize themselves
with EasyNotes from an end-user perspective, without looking at the source code. This
provided them an overview of the application domain and helped them to better understand
their subsequent tasks. Then, the session monitoring plugin was briefly introduced.

A short presentation about concern annotations usage in the NetBeans IDE followed. A
researcher presented how to show a list of all available concerns, how to use the Find Usages
feature on an annotation type and how to navigate from the annotation occurrence to an
annotation type.

Just before each of the two maintenance tasks, the researcher presented the participants
a running application with the required feature already implemented. This had two positive
effects:

• It significantly lowered the task ambiguity. While a natural-language description was
available in the web form during the tasks, seeing the finished application gave the
participants greater confidence, so almost nobody asked unnecessary questions.

• We consider this a replacement for unit tests. As GUI code is notoriously difficult to
test [160], we decided not implement the test code. At the same time, the researcher’s
discretion about the task correctness was not indispensable during the experiment.
Students just knew they finished the task when their application did the same thing as
we had showed them.

In addition, the participants later uploaded their modified version of the source code to the
web form. This way, potential disputes could be resolved without time stress.

Tasks

The experiment comprised of:
• one additive maintenance task (we will name it Filter),
• three program comprehension questions (Test),
• one corrective maintenance task (Cite),

4http://www.jotformeu.com/sulir/sharing-annotations
5http://github.com/MilanNosal/sieve-source-code-editor

41

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

in that order.
The tasks were formulated as follows:

Filter In a running EasyNotes application, load the sample notes and look at the searching
feature (the down-right part of the window). Try how searching in the note text works
(the option “Search in”: “text”). Your task will be to add a filter to the EasyNotes
application, which will search in the notes title (the option “title”).

Cite In the EasyNotes application, there is a field “Cite as:” (the down-right window part).
Currently, it displays information in the form: somePubID where somePubID is the
value of the “PubID:” field. Your task is to modify the program so the “Cite as:” field
will display information in the form: \cite{somePubID}.

Both tasks were simple, although the Filter task was slightly more complex than the latter. It
required the creation of a new class with approximately 15 lines of code, whereas the Cite
task could be accomplished by modifying just one source code line.

The questions asked in the Test about program comprehension were:
Q1 What does the runDirMenuItemActionPerformed in the class easynotes.swingui.EasyNotesFrame

do?
Q2 How is the class easynotes.model.abstractModel.UTFStringComparator used in the

EasyNotes project?
Q3 What method/s (and in which class) do perform note deleting?

Demographic Data Collection

At the end of the experiment, the form contained three demographic questions about the
subjects’ abilities:

• a general programming experience,
• their experience with Java, annotations and NetBeans
• and their English level.

Each question had possible answers on a 5-point Likert scale: from Beginner to Expert. We
did not perform any specialized tests to measure programming experience, as a subjective
opinion is good enough [68].

Debriefing

We also included a question asking to what extent did the subjects use annotations when
comprehending the code. Possible answers ranged from Never to Always on a 5-point Likert
scale. Finally, the form also contained a free-form question where the participants could
describe how the annotations helped them in their own words.

5.1.5 Results
The measured values and their summary is presented in Table 5.1. To analyze the results, we
used the R scripting language, auxiliary Ruby scripts and spreadsheets.

Each specific hypothesis considers one independent variable on a nominal scale with
two levels (annotated, unannotated) and one dependent variable (either correctness, time
or confidence). For each dependent variable, we displayed the values on a histogram and
a normal Q-Q plot. None of the variables looked normally distributed, so we used the
Mann-Whitney U test as a statistical test for our hypotheses.

42

5.1. The Effect of Annotations on Program Maintenance

Table 5.1: Experiment results for individual subjects

(a) the “annotated” group

ID
Correctness [true/false] Time [min] Efficiency

[task/min]
Confidence [1-3]

Files
Annot.
useful
[1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

1 1 1 1 0 1 80% 12.03 3.00 13.96 28.99 0.14 1 3 5 3.00 19 1
3 0 1 0 0 0 20% 5.23 2.81 11.13 19.17 0.05 5 3 5 4.33 10 3
5 1 1 1 1 1 100% 17.43 3.93 6.71 28.07 0.18 5 5 5 5.00 18 4
7 0 1 1 1 1 80% 7.79 1.43 11.85 21.07 0.19 5 5 5 5.00 10 4
9 1 1 1 0 1 80% 6.72 5.86 3.87 16.45 0.24 5 5 3 4.33 20 2

11 1 1 1 0 1 80% 8.41 4.58 4.32 17.31 0.23 5 5 5 5.00 13 4
13 1 1 0 0 1 60% 20.97 3.48 8.80 33.25 0.09 5 3 5 4.33 11 3
15 1 1 1 0 1 80% 4.64 1.91 5.22 11.77 0.34 3 3 5 3.67 11 2
17 1 1 1 0 1 80% 25.08 6.38 6.99 38.45 0.10 3 3 5 3.67 16 4

Median 1 1 1 0 1 80% 8.41 3.48 6.99 21.07 0.18 5 3 5 4.33 13 3
Std.dev. - - - - - 22% 7.41 1.67 3.57 8.80 0.09 - - - 0.70 4 -

(b) the “unannotated” group

ID
Correctness [true/false] Time [min] Efficiency

[task/min]
Confidence [1-3]

Files
Annot.
useful
[1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

2 1 1 1 0 1 80% 2.84 4.72 10.66 18.22 0.22 5 3 5 4.33 9 NA
4 0 0 1 0 1 40% 8.76 23.45 8.10 40.31 0.05 5 3 5 4.33 19 NA
6 1 1 1 0 0 60% 18.24 5.23 5.62 29.09 0.10 5 3 1 3.00 17 NA
8 1 1 1 0 1 80% 6.47 5.59 11.23 23.29 0.17 5 3 5 4.33 8 NA

10 1 0 1 0 1 60% 4.82 9.64 17.50 31.96 0.09 5 3 5 4.33 8 NA
12 1 0 1 0 1 60% 11.11 2.09 11.30 24.50 0.12 3 3 3 3.00 13 NA
14 0 1 0 0 1 40% 30.73 7.19 5.50 43.42 0.05 3 3 5 3.67 17 NA
16 1 1 1 0 1 80% 12.56 18.39 16.07 47.02 0.09 5 3 5 4.33 14 NA
18 1 1 1 0 1 80% 25.54 9.59 12.94 48.07 0.08 5 3 5 4.33 16 NA

Median 1 1 1 0 1 60% 11.11 7.19 11.23 31.96 0.09 5 3 5 4.33 14 NA
Std.dev. - - - - - 17% 9.56 6.98 4.18 11.06 0.06 - - - 0.59 4 -

Correctness

The median of correctness for both the “annotated” group was 80%, while the “unannotated”
one achieved 60%. See Fig. 5.1a for a plot.

The computed p-value (roughly speaking, the probability that we obtained the data by
chance) is 0.0938, which is more than 0.05 (our significance level). This means we accept
H5.1corr, null. The effect of the presence of annotations on program comprehension and
maintenance correctness was not confirmed.

As we can see in Table 5.1 (column Correctness), the most difficult question was Q2.
Only two participants answered it correctly – both from the “annotated” group. The class of
interest was not used in EasyNotes at all. This fact was noticeable by looking at the Unused

annotation.

Time

The differences in the total time for all tasks between two groups are graphically depicted in
the box plot in Fig. 5.1b. The median time changed from 31.96 minutes for the “unannotated”
group to 21.07 minutes for the “annotated” one, which is a decrease by 34.07%.

43

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

●

●

●

annotated (80.00) unannotated (60.00)

2
0

4
0

6
0

8
0

1
0
0

c
o
rr

e
c
tn

e
s
s
 [
%

]

(a) correctness

annotated (21.07) unannotated (31.96)

2
0

3
0

4
0

ti
m

e
 [
m

in
]

(b) time

annotated (4.33) unannotated (4.33)

3
.0

3
.5

4
.0

4
.5

5
.0

c
o
n
fi
d
e
n
c
e
 [
L
ik

e
rt

,
1
−

3
]

(c) confidence

Figure 5.1: Results of the controlled experiment

The p-value of time is 0.0252, that is less than 0.05. The difference is statistically
significant, therefore we reject H5.1time, null and accept H5.1time, alt. The presence of concern
annotations improves the program comprehension and maintenance time.

It is possible to see from Table 5.1 (column Time) that the median time for each individual
task was better for the “annotated” group. The most prominent difference was for the task
Cite. This can be due to the fact that the project contained the concern annotation Citing

which helped the participants find the relevant code quickly.
The median of efficiency, which we defined as the number of correctly performed tasks

(and answers) divided by total time, raised by 89.76% (p=0.0312). This means the time
improvement is significant even if we take correctness into account.

44

5.1. The Effect of Annotations on Program Maintenance

Confidence

The median of mean confidence is the same for both groups (2.67), as obvious from Table 5.1,
column Confidence / Mean and Fig.5.1c. The p-value is 0.1710 (> 0.05) and therefore we
accept H5.1conf, null. The effect of concern annotations on confidence was not demonstrated.

Looking at individual questions, Q2 was clearly perceived the most difficult. This cor-
responds with our previous finding about the correctness. An interesting fact is that no
participant in the “unannotated” group was confident enough to select the level 3 (Absolutely),
while in the “annotated” group, there were 4 such subjects and two of them really answered
correctly.

Other Findings

Although not included in our hypotheses, we also measured how many unique Java source files
did the subjects open in the IDE during the whole experiment. We excluded the annotation
type files in these numbers. The results are in Table 5.1, column Files. There was only a
marginal and statistically insignificant improvement in medians (from 14 to 13).

As seen from Table 5.1, column “Annotations useful?”, concern annotations were per-
ceived relatively helpful by the participants (median 3 from 5-point Likert scale).

Answers to a free-form question asking how specifically were the annotations useful
included:

• faster orientation in a new project,
• faster searching (mainly through Find Usages on annotations),
• less scrolling,
• “they helped me to understand some methods”,
• “annotations could be perfect, but I would have to get used to them”.

5.1.6 Threats to Validity

To analyze threats to validity of this experiment, we used [176] as guidelines.

Construct Validity

Similar to Kosar et al. [123], we compensated the students with points for the participation
in the experiment, which increased their enthusiasm. Unlike them, we did not reward the
participants with bonus points for good results because our experiment spanned several days
with the same tasks and this would motivate the students to discuss the task details with
classmates, which could negatively affect the construct validity (interaction between subjects).
Furthermore, the participants were explicitly told not to share experiment details with anyone.
Therefore, we do not consider executing the experiment in three separate sessions an important
validity threat.

To measure confidence, we used only a 3-point Likert scale. This decision was not
optimal. Because subjects rarely select the value of 1 (which can be interpreted as guessing an
answer), there were only two values left. This could be one of the reasons we did not found a
statistically significant difference in confidence.

45

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

Internal Validity

There could be a selection bias in the experiment because we selected the participants using
subjective criteria. As we already mentioned, we concentrated on subjects with a potential
future career as developers.

We divided the subjects into groups randomly. Another possibility was a quasi-experiment
(nonrandom assignment), i.e., to divide the subjects evenly according to the most important co-
factor affecting the results, like their programming experience. However, random assignments
tend to have larger effect sizes than quasi-experiments [107].

We did not perform a full pilot testing with third-party participants, only tested the
comprehension questions on one of the researchers. We rejected 3 out of the 6 prepared
questions because we considered them too difficult and ambiguous. Despite this, all tasks
were either completed by almost all participants (Filter, Q1, Q3, Cite) or by almost none (Q2)
during the experiment. This negatively affected the results for the “correctness” variable.

During the actual experiment, we used a native language (Slovak) version of the web form
to eliminate the effect of English knowledge on the results. While the source code was in
English, this did not present a validity threat since all participants had at least a medium level
(3 on a 5-point Likert scale) of English knowledge.

External Validity

We invited only students to our experiment, no professional developers. We can take this
fact positively – concern annotation consumers are expected to be mainly junior developers,
whereas potential annotation creators are mostly senior developers. Furthermore, some
students may already work in companies during their study.

EasyNotes is a small-scale Java project – around 3 kLOC (thousands of lines of code),
including annotations. The effect of concern annotations on larger programs should be
investigated.

Reliability

The concern annotations training (tutorial) was presented manually by a researcher. However,
there were two independent researchers which took turns.

The experiment is replicable, as we published the data collection form6 which contains
both the guidelines and links to the materials (two versions of the EasyNotes project).

Conclusion Validity

A small number of subjects (n=9 per group) is the most important conclusion validity threat.
If we used a paired design (to assign both treatments to every subject), we could easily reach
n=18. However, the participants would quickly become familiar with EasyNotes and the
second set of tasks would be affected by their knowledge.

5.1.7 Conclusion
We successfully confirmed the hypothesis that concern annotations have a positive effect on
program comprehension and maintenance time. The group which had concern annotations
available in their project reached a time more than 34% shorter than the group without them
(p < 0.05).

6http://www.jotformeu.com/sulir/sharing-annotations

46

5.2. Replication of the Controlled Experiment

On the other hand, we did not discover a significant change in correctness and confidence.
However, the correctness results were positively included towards the “annotated” group.

5.2 Replication of the Controlled Experiment
While replication is a crucial scientific method, less than 18% of controlled experiments in
software engineering are replications [228]. We decided to repeat the experiment with slightly
modified conditions, i.e., to perform a differentiated replication [282].

The hypotheses, independent and dependent variables, comprehension questions and
maintenance tasks were exactly the same as in the original experiment. Demographic charac-
teristics of the participants, training and execution details were different.

5.2.1 Method
This time, we concentrated on developers with some industrial experience. We contacted the
developers we known directly by e-mail. Additionaly, we distributed an announcement using
a social network and an Internet forum. The participation was voluntary and no compensation
was provided.

20 subjects decided to participate in the experiment. However, one participant completed
only the first task, so we excluded him completely. During the analysis of time results for 19
subjects, we found a strong outlier. After contacting the person, we found out that he was
interrupted during the experiment. We decided to exclude this subject, too. Therefore, we
take only the 18 subjects who participated in the whole experiment into account.

The average (mean) age of the subjects was 26.8 years. The mean full-time programming
experience of the participants was 2.7 years. However, some subjects had only part-time work
experience. Each participant worked in one of at least 6 different companies, thus assuring
high diversity.

Instead of providing a presentation in person, the training consisted of a written tutorial
contained in the form.

5.2.2 Results
In Table 5.2, we can see detailed results of the experiment replication. Now we will describe
the results of correctness, time and confidence.

Correctness

In Figure 5.2a, there is a box plot of the results of tasks correctness. The “annotated” group was
better: its median was 80%, compared to only 60% for the “unannotated” group. Therefore,
the correctness is 33% higher for the “annotated” group. The computed p-value was 0.0198 –
the result is statistically significant. We accept H5.1corr, alt.

Time

The time for “annotated” group was now higher: the median was 31.50 minutes, compared
to 24.52 minutes for the control group. However, the result is statistically insignificant
(p=0.1487). The results for time are depicted in Figure 5.2b.

47

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

Table 5.2: Detailed results of experiment replication

(a) the “annotated” group

ID
Correctness [true/false] Time [min] Efficiency

[task/min]
Confidence [1-3]

Files
Annot.
useful
[1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

19 1 1 1 0 1 80% 11.94 5.48 35.95 53.37 0.07 5 4 4 4.33 18 2
21 1 1 1 1 1 100% 19.87 14.49 9.30 43.66 0.11 4 5 5 4.67 14 3
23 1 1 1 0 1 80% 5.97 23.20 6.69 35.86 0.11 5 4 5 4.67 17 4
27 1 1 1 1 1 100% 10.67 5.01 28.90 44.58 0.11 4 3 5 4.00 14 3
29 1 1 1 0 1 80% 19.80 3.22 7.12 30.14 0.13 4 4 4 4.00 13 3
31 1 1 0 0 1 60% 12.17 3.80 6.08 22.05 0.14 4 5 5 4.67 11 3
51 0 1 1 0 1 60% 9.12 3.59 6.29 19.00 0.16 4 5 5 4.67 12 4
53 1 1 1 1 1 100% 9.07 13.43 9.00 31.50 0.16 5 5 5 5.00 22 3
55 1 1 1 0 1 80% 2.83 3.82 5.75 12.40 0.32 4 4 4 4.00 9 1

Median 1 1 1 0 1 60% 10.67 5.01 7.12 31.50 0.13 4 4 5 4.67 14 3
Std.dev. - - - - - 16% 5.67 7.01 11.34 13.32 0.07 - - - 0.37 4 -

(b) the “unannotated” group

ID
Correctness [true/false] Time [min] Efficiency

[task/min]
Confidence [1-3]

Files
Annot.
useful
[1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

20 1 1 0 0 0 40% 7.88 15.09 49.71 72.68 0.03 5 3 4 4.00 19 1
22 1 1 1 0 1 80% 4.71 3.19 11.93 19.83 0.20 5 2 5 4.00 11 1
24 1 1 1 1 1 100% 6.78 6.12 16.62 29.52 0.17 4 3 5 4.00 10 1
26 1 0 0 0 1 40% 4.68 5.61 14.23 24.52 0.08 4 4 5 4.33 9 3
30 1 0 1 0 0 40% 2.53 9.78 5.00 17.31 0.12 5 4 4 4.33 NA 1
32 1 1 1 0 1 80% 9.27 2.29 17.87 29.43 0.14 4 5 5 4.67 9 1
50 1 1 0 0 0 40% 5.37 1.71 11.58 18.66 0.11 5 4 3 4.00 11 1
52 1 1 1 0 0 60% 7.02 8.22 17.39 32.63 0.09 5 4 4 4.33 11 1
54 1 1 0 0 1 60% 4.21 8.79 4.85 17.85 0.17 4 5 5 4.67 16 1

Median 1 1 1 0 1 40% 5.37 6.12 14.23 24.52 0.12 5 4 5 4.33 NA 1
Std.dev. - - - - - 22% 2.08 4.25 13.34 17.30 0.05 - - - 0.28 NA -

Confidence

In Figure 5.2c, there are the results for the confidence according to the answers in the
form. The median of mean confidence for three comprehension questions was higher for the
“annotated” group: 4.67, compared to 4.33. Nevertheless, the p-value is 0.1417, so the result
is insignificant.

5.2.3 Threats to Validity
The threats to validity are similar to the original experiment. The main difference is the
increased external validity thanks to the inclusion of industrial developers from multiple
companies.

5.2.4 Conclusion
We performed a replication of the experiment studying the effect of concern annotations
presence in the source code. In this replication, we measured a statistically significant 33%
increase of correctness for comprehension tasks and questions.

48

5.3. Automation of Concern Annotation

annotated (80.00) unannotated (60.00)

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

c
o

rr
e

c
tn

e
s
s
 [

%
]

(a) correctness

●

annotated (31.50) unannotated (24.52)

1
0

2
0

3
0

4
0

5
0

6
0

7
0

ti
m

e
 [

m
in

]

(b) time

annotated (4.67) unannotated (4.33)

4
.0

4
.2

4
.4

4
.6

4
.8

5
.0

c
o

n
fi
d

e
n

c
e

 [
L

ik
e

rt
,

1
−

5
]

(c) confidence

Figure 5.2: Results of the experiment replication

5.3 Automation of Concern Annotation

Although the presence of concern annotations improves comprehension time and correctness,
manually labeling the source code is a laborious process. For this reason, we will introduce a
simple automation method in this section. To compute the correspondence of source code
parts to concerns, we will use an existing technique of differential code coverage [226]. We
are interested only in domain annotations, representing program features visible to the end
user.

An overview of the whole process for one specific concern is in Fig. 5.3. The process can
be also run with a list of multiple concern names supplied. In this case, the AutoAnnot part is

49

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

A
ut

oA
nn

ot

source code executable (JAR) concern name

concern-related run concern-unrelated run

methods1 methods2

methods1 − methods2

annotated source code

Figure 5.3: An annotation process for a specific concern. Solid arrows represent automated processes, dashed
partially manual ones. © 2015 IEEE

repeated for each concern.

5.3.1 Creating Annotation Types
First, the programmer must create an annotation type for each concern they recognize in a
program. This process is not automated and remains the same as before.

5.3.2 Differential Code Coverage
Differential code coverage [226] is based on an idea of running an application two times
– with and then without a particular feature utilized – and subtracting the sets of method
executed. In this section, we will apply this idea to annotate the resulting set of methods.

Instrumentation

The program is augmented so that execution traces are collected when it is run. We used
BTrace7. It was run as a Java agent – a program which can instrument the bytecode at runtime.
BTrace uses a file with Java-like syntax, specifying which actions should be performed e.g.
on each method call.

We configured BTrace to log a fully-qualified name of each called method to a file. A
fully-qualified name unambiguously identifies the method – it includes a package and class
name, a method name and parameters types. Each method is included only once in a log file,
even if it is called multiple times. We also included constructors in the logs.

Execution

For each concern, our tool (AutoAnnot) executes the program twice. During these runs, a
programmer performs user interface actions in the following way:

• first with the particular concern utilized – a concern-related run
• and the second time in a manner when the concern is not utilized – a concern-unrelated

run.
For example, if the concern of interest is “file saving”, the user first creates a simple

drawing in the application and saves it to a file; in the second run (s)he creates the drawing
again but discards the changes.

7http://kenai.com/projects/btrace

50

5.4. Comparing Manual and Automated Annotation

During these executions, AutoAnnot records the execution traces. Now we have two log
files for a particular concern – one containing the methods from the first run, one from the
second.

Subtraction

Let us call the set of methods executed for concern c during the first run M1(c), during the
second one M2(c). Then the set of methods most specific to the concern c is:

M(c) = M1(c)−M2(c)

This way, only methods specific to a particular concern are included in the result, leaving
out utility methods and methods common to multiple concerns.

5.3.3 Writing Annotations
Once a set of methods corresponding to a particular concern is computed, each of these
methods is annotated. The original source code is parsed, modified and written back using the
Roaster library8.

There was a problem with Java’s anonymous classes – mapping from the class during
runtime to a class in the source code was ambiguous. For this reason, we chose not to annotate
methods inside anonymous classes.

This could be a example of an excerpt from the resulting annotated source code of a
diagramming application:

@Drawing

@Erasing

public void changeTool(Tool tool) {

...

}

@Erasing

public void clearRegion(Shape region) {

...

}

5.4 Comparing Manual and Automated Annotation
A traditional form of the evaluation of approaches annotating code parts with features or
concerns (feature location or concern location) is to compare the automatically annotated
source code with the code annotated manually by the author of the code (or a maintainer
of the project). The manually annotated project is considered “the gold standard” and the
correctness of this code-concern mapping is usually not questioned. However, multiple human
annotators also have mutual discrepancies in their views of concerns and their mapping to
code parts. We will compare:

• an overlap (agreement) between the annotation occurrences of multiple human annota-
tors of the same project (who are not its authors)

• and an overlap between the annotation occurrences marked by the author of the project
and the semi-automated annotator.

8http://github.com/forge/roaster

51

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

5.4.1 Method
We performed this study on EasyNotes9 – a 2500 LOC (lines of code) desktop Java application
for bibliographic note-taking.

Annotations of Non-authors

We used manually-annotated source code from the previous study [246], where the procedure
was as follows: Seven participants, who were not authors of the code, were asked to cretate
an annotation type for any concern recognized in the application. Then they marked elements
with concern annotations they thought are relevant.

For this study, we selected 8 domain concerns (features) which were recognized by at
least two participants. We we considering only concerns which were clearly distinguishable
from other ones (e.g., we excluded “filtering” because there existed a very related concern
“filter management”).

Annotations of the Author

The author of the EasyNotes application was asked to mark methods in the source code with
the 8 given features according to his own discretion, thus producing the author-annotated
source code.

Automatic Annotation

Again, we used the same 8 domain-related concerns recognized by participants of the previous
study. For every concern, a researcher executed the program two times as described in section
5.3.2. The decision what a particular concern comprises was subjective – left on the researcher.
Annotations of methods resulting from the differential code coverage were written into the
source code.

Comparison

First, we calculated the overlap between non-authors. The overlap (agreement) among n
persons is defined as the number of annotation occurrences shared by n people divided by the
number of all annotation occurrences. For example, if six persons annotate only the method
saveLink with the concern “Links”, and one person annotates only the method loadLink with
this concern, the overlap among 6 persons is 50% for this particular concern. Analogously,
we can also say there was a 50% overlap among “at least 6 persons”, which is a sum of the
overlap by exactly 6 and 7 persons.

Next, the overlap between the author-annotated code and the semi-automated (AutoAnnot)
annotation was computed. This is a special case of the above metric for only two annotators.
Formally, we can express it as:

|Mauthor∩MAutoAnnot |
|Mauthor∪MAutoAnnot |

where Mauthor is a set of methods annotated with a particular concern by the author, MAutoAnnot
a set of semi-automatically annotated ones.

9http://github.com/MilanNosal/easy-notes

52

5.4. Comparing Manual and Automated Annotation

Table 5.3: Features and their overlaps

Concern
Overlap between

≥ 2 non-authors ≥ 3 non-authors ≥ 4 non-authors author & AutoAnnot

Citing 0.00% 0.00% 0.00% 16.67%
Links 38.46% 7.69% 0.00% 22.37%
NoteAdding 38.10% 23.81% 4.76% 25.00%
NoteDeleting 18.75% 12.50% 6.25% 66.67%
NoteEditing 60.00% 12.00% 0.00% 11.76%
NotesLoading 35.00% 25.00% 10.00% 38.46%
NotesSaving 30.77% 15.38% 3.85% 41.67%
Tagging 64.29% 28.57% 0.00% 8.33%

Total 38.19% 16.67% 3.47% 24.73%

5.4.2 Results

Table 5.3 contains the results. First, there are computed overlaps between at least 2, 3 and 4
non-authors. The last column represents the overlap between the author an the semi-automated
annotator. The “Total” row represents a weighted average, i.e., the overlap calculated for all
concerns.

We can see that the overlap (agreement) between the code author and AutoAnnot is higher
than the agreement among at least 3 of the 7 persons, but lower than the agreement among at
least 2 persons.

5.4.3 Threats to Validity

Now we will present threats to validity according to guidelines [215].

Construct Validity

Instead of a custom-defined overlap metric, we could use standard metrics like Cohen’s kappa
or Fleiss’ kappa. However, since we used the results of a previous study, we decided to use
the same (analogous) metric for a simpler direct comparison.

Internal Validity

Participants of our previous study (manual annotation by non-authors) were asked to annotate
methods, types (classes, enums, etc.) and member variables. During the code author’s and
semi-automatic annotation, only methods were allowed to be annotated. It is not certain
what annotating a class in respect to its methods means. Do absolutely all methods of the
class pertain to the given concern? Or does it hold for a majority of methods? Probably the
most elegant solution is to refrain from labeling classes and annotate only methods instead.
However, we did not compare the code where all types of elements could be annotated directly
with the code where only methods were annotable. Therefore, we do not consider this threat
significant.

53

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

External Validity

We performed the comparison only on one particular project. The source code is small: 2.5
kLOC in 33 classes, excluding annotations. The study should be repeated on a larger project,
preferably from another domain and using other technologies, to confirm the generality of
results.

Reliability

The execution step of differential code coverage for all concerns was performed entirely by
one researcher. The results are therefore affected by his subjective decisions, mainly during
the execution phase of differential code coverage.

5.5 Related Work
The works related to concern annotations and the performed studies will be presented now.

5.5.1 Concerns
Reinikainen et al. [201] present concern-base queries to reason about the program. However,
their approach is based on UML (Unified Modeling Language) models, while we use the
source code of a system.

Niu et al. [180] propose the application of HFC (hierarchical faceted categories) on source
code. Their approach requires specialized tools whereas we use source code annotations
which have a standard IDE support.

Revelle et al. [205] performed case studies regarding the identification of concerns in
source code. However, the tagging was performed only manually, and their study included
only two concern sets. They also present a list of concern tagging guidelines. Sadly, these
guidelines are not fully applicable for us, since they created an Eclipse plug-in allowing to
tag and color-mark the source code with character granularity. Standard Java does not allow
annotating arbitrary statements below the method level.

ConcernMapper [208] allows a programmatical assignment of concerns to code. However,
it stores the metadata in an external file. In [208], the authors also asked a similar question
than us: What does it mean to label a class? They finally decided to allow labeling only fields
and methods.

Developers often write “TODO comments” like // TODO: fix this to mark mark parts
of source code which need their attention [242] (maintenance concerns). IDEs can then
try to parse and display these notes in a task list window. Our approach is more formal,
as annotations are a part of the standard Java grammar and can be parsed unambiguously.
Furthermore, it is possible to distinguish between multiple maintenance note types through
individual annotation types.

5.5.2 Annotations
Today, one of the most common applications of annotations is configuration. A programmer
marks selected source code elements with appropriate annotations. Later, they are processed
either by an annotation processor (during compilation) or by reflection (at runtime). For
example, annotations can be used to define concrete syntax in parser generators [192] and
to declare references between elements in a domain-specific language [127]. This way,

54

5.6. Conclusion

annotations can indirectly modify the annotated program semantics. In contrast, our approach
utilizes annotations just as clues for a programmer which are processed by an IDE when
needed.

Sabo and Porubän [216] use source code annotations to preserve design patterns. There-
fore, their approach does not include recording and sharing domain and maintenance annota-
tions.

In Java, annotations can be only applied to packages, classes, member variables, methods
and parameters. @Java [41], an extension to the standard Java language, brings annotations
below the method level. It allows to mark individual source code statements like assignments,
method calls, conditions and loops with annotations. This could be useful to capture e.g.,
algorithmic design decisions with concern annotations.

5.5.3 Differential Code Coverage
The idea of subtracting code coverage results was originally described by Wilde et al. [279]. In
contrast to our approach, the traced application was not executed by a user interactively. They
used test cases written in a form of a source code instead. The evaluation was performed by
comparing the program authors’ feature-code mapping to the results obtained by an automated
analysis. In [278], Wilde and Casey called their method “software reconnaissance”. Sherwood
and Murphy [226] observed programmers using an IDE plugin based on this approach and
gave it a more expressive name “differential code coverage”.

5.5.4 Feature Mapping
A commonly used technique to assign features to source code fragments are #ifdef pre-
processor macros in C and C++. They enable variability [141]: when a particular feature
is configured to be included in the produced software, the implementing code is compiled,
otherwise not. Although the C preprocessor is language-independent [141] and can be in
theory used also for Java and C#, it rarely is in practice. Besides, our goal was not to support
feature variability via feature-oriented software product lines [263], but rather to ease program
comprehension.

The CIDE tool [110] enables annotation of source code elements with features, visualizing
them with colors, hiding irrelevant features, and exporting parts into modules. In contrast
to our approach, it maps only features, not various run-time hints, to parts of source code.
Furthermore, they save the mappings to external files, while we overwrite the source code
itself.

Ji et al. [104] assessed the cost of manually annotating features in source code via
specially formatted comments. According to the study they performed, the cost of adding
and maintaining such annotations is small compared to the cost of the whole development
process.

5.6 Conclusion
In this chapter, we reported the results of experiments studying concern annotations – source
code annotations aiming to capture parts of developers’ mental model, namely their concerns
(intents). Each concern (e.g., “searching”, “editing”, “GUI code”, “unused code”) is imple-
mented as an annotation type. Subsequently, all classes and methods relevant to that concern
are marked with the given annotation.

55

5. MANUAL AND RUNTIME-BASED CONCERN ANNOTATION

First, in the controlled experiment, we showed the presence of concern annotations in the
code causes a statistically significant improvement of development time when performing
program comprehension and maintenance tasks on a small-scale Java project. The group
which had an annotated version of the same program available, consumed 34% less time
than the group which did not have concern annotations present in the source code. In the
replication with industrial developers, we measured a 33% increase of correctness. We can
conclude that concern annotations are useful for program comprehension and maintenance,
confirming the “correctness” and “time” parts of our hypothesis (H5.1). Although the results
regarding confidence were not statistically significant, they were positively inclined towards
the “annotated” group in both experiment executions.

Second, we presented a simple an approach for semi-automatic concern annotation. The
input of our demo tool, AutoAnnot, is an unannotated source code, the executable file of an
application to be annotated and a concern name (or a list thereof). The user runs the program
two times – once using the features of interest (a concern-related run) and then purposely
not using them (a concern-unrelated run). AutoAnnot traces the sets of methods executed
and subtracts the second set from the first one. The resulting set of methods is marked with
Java annotations, overwriting the original source code. AutoAnnot acts as an example how a
runtime-based approach can be viewed as an alternative to manual annotation.

To answer RQ5.1, we found that the overlap (agreement) between semi-automatic and
code author’s annotations is worse than the agreement among at least 2 of 7 independent
annotators, but better than the agreement among at least 3 of 7 such annotators.

In our controlled experiments, the source code was commented scarcely or not at all. An
interesting future experiment would consider an annotated program vs. a program without
annotations, but with high-quality traditional source code comments instead.

For now, the annotation types must be supplied manually. However, user interfaces (UIs)
contain domain terms which could be used for automated annotation type creation.

56

Chapter 6

Persisting Runtime Metadata

In chapter 4, we reviewed source code labeling approaches, including tools which assign
runtime metadata (data obtained by dynamic analysis) to parts of source code. The mentioned
tools usually fall into one of two categories:

• The information is displayed while the program is running, and then discarded.
• The collected data are stored in a file separate from the source code.
In the first case, the program must be re-run with the same input each time a developer

needs to access the run-time information.
In the second case, each piece of information must link to the corresponding source code

element. As the source code changes through time, the references may be no longer valid if
the tool managing them is not notified about the modification. For example, if we refer to a
source code element using its file name and line number, and a few lines are inserted above
the element, the reference becomes invalid. Several approaches exist to cope with the problem
of source location tracking [203]. Nevertheless, none of them works flawlessly: Even some
of the most precise methods correctly refer to only roughly 90% of identifiers after source
code changes [203].

Furthermore, in both cases, the tool authors have two main implementation possibilities:
• an IDE (integrated development environment) plugin
• or a standalone tool.

Each of these two possibilities has its advantages and shortcomings.
IDE plugins allow for a utilization of a tight integration between the source code, the

current IDE features and the new feature of the tool. For example, we can represent a
comprehensibility metric with a light or dark red background [23] directly in the editable
source code view of the IDE. The background color supplements existing source code
highlighting and the programmer can view this augmentation and edit the source code at
the same time, without switching between two separate tools. However, plugins have also
disadvantages. Since individual IDEs have very different plugin development interfaces,
large parts of plugins must be developed individually for each supported IDE. For example,
to support only some of the most popular Java IDEs, we must create a separate plugin for
Eclipse, IntelliJ IDEA, NetBeans and JDeveloper. The situation becomes even worse when
we have to consider also text editors like jEdit, Vim and Emacs. Finally, there are slight
differences between individual versions of the same IDE, so a plugin developed for Eclipse

57

6. PERSISTING RUNTIME METADATA

4.7 may be incompatible with Eclipse 4.3 and vice versa.
Standalone tools display the source code and metadata separately, without any connection

with an IDE. This poses cognitive burden on the developer – he must switch back and
forth between two tools, navigate to correct parts in both of them and mentally connect
the corresponding parts. This is called a split-attention effect [20]. On the other hand, the
advantage of separate tools is lower creation and maintenance cost for the tool author.

If a tool was writing the produced data directly into source code, next to the related code
parts, it could be IDE-independent, while the developers could use their favorite IDE to view
the data. Furthermore, the problem of code location tracking would be eliminated. Therefore,
in this chapter1, we ask the following research question:

RQ6.1 How can runtime metadata be persisted directly in source code files?
We will discuss two aspects of this question. First, it is necessary to select the format in

which the data should be written. Second, we will be interested how such an approach could
be integrated with an existing software development workflow.

6.1 Format
We suggest two possible persistence formats: annotation-based and comment-based. The
former is suitable for metadata pertaining to a specific class, member variable, method or
parameter. The latter can be used for metadata with line-level granularity.

6.1.1 Annotation-Based Metadata
Java annotations (or attributes in C#) are a form of meta-programming, marking program
elements with additional metadata. Traditionally, they are written manually by programmers.
Then, these annotations are programatically read during compilation by annotation processors,
or at runtime – using reflection. Consider this example:

@Min(3)

@Max(120)

private int age;

The programmer is giving “hints” to a system that the age has valid values from 3 to 120.
The system can then use these manually supplied information at runtime – to perform data
validation.

We will show how an opposite of the traditional process can be advantageous. Annotations
will be written into the source code automatically (using runtime information), and read later
by programmers to aid program comprehension.

Let us consider a situation when a programmer wants to analyze the program using a tool
which outputs results for each class, method, member variable or other annotable element
in the source code. He runs a tool, independent of a particular IDE. The tool overwrites the
existing source code files, writing an annotation above each method. The resulting source
code has this form (Java syntax):

@Metadata{value}

source_code_element

1This chapter contains material from our articles: [252], [258].

58

6.1. Format

The @Metadata annotation must be unique and not yet present in the code (before analysis).
For example, if a tool produces a numeric metric for each method, a hypothetical source

code snippet looks like this:

@SomeMetric{1.7}

public void method() {

...

}

We will demonstrate the idea on various smaller examples.

Profiling

Output of a profiler is often used by a single programmer, not shared among developers.
Hotspots, i.e., the methods which are executed for the longest time according to the profiler,
could be automatically marked with the HotSpot annotation. The parameters might include
the time percentage and an optional programmer-supplied use case name:

@HotSpot(selfTimePercent=32, useCase="Order")

public BigDecimal getPrice() {

...

}

The method can be then optimized by another member of the team. Re-running a tool
would automatically remove the annotation if it was no longer a hotspot. Alternatively, it
could be removed manually when fixing a performance-related bug.

Run-time Call Graph

A call graph consists of methods as nodes, and all possible calls between them as directed
edges. While a static call graph can be generated from the source code itself, it does not
distinguish whether a particular call was really executed. A dynamic call graph contains just
actual method calls for a particular execution. We could annotate methods with their direct
callers:

@Caller(clazz=Order.class, method="getTotal")

@Caller(clazz=Cart.class, method="add")

public BigDecimal getPrice() {

...

}

Call graph exploration tools were shown to improve maintenance efficiency [109]. In our
case, the exploration itself would require no additional tool except a standard text editor.

Dynamic Type Information

Due to polymorphism, a method with a parameter (or a return value) of a given abstract type
can accept (or return) an object of any inherited concrete type. However, while reading the
source code in an IDE, only the abstract type is apparent to the developer [212]. Suppose we
have a system with a complicated shape hierarchy, containing many abstract and concrete
classes. Consider the following example:

59

6. PERSISTING RUNTIME METADATA

public void clearRegion(Shape region) {

...

}

By looking at the method, the developer has no idea what types of regions were cleared
during the testing of an application. Using a debugger, it is possible to find the concrete
types. However, such process is laborious and the data are discarded as soon as the debugging
session ends. The list of concrete classes could be determined by a tool, which would annotate
the method (using Java 8 parameter annotations):

public void clearRegion(

@Types({Square.class, Dot.class}) Shape region

) {

...

}

Faults and Flaws

There exist many tools for automatic or semi-automatic detection of potential faults, resource
leaks or security flaws. However, the results of their analysis, which could include human
work, are often thrown away after the programming session ends.

We propose that such tools should annotate the source code with the found flaws. For
example, if a monitoring tool determines that in the moment of program termination, a
particular file (represented by a member variable) was not yet closed, it could annotate it:

@ResourceLeak(Leak.FileNotClosed)

FileReader inputFile;

Thanks to this, the flaw remains permanently noted until it is fixed – when it is removed
either by a programmer or by the automated tool. Furthermore, all team members working
with this piece of code can become aware of it.

6.1.2 Comment-Based Metadata
Sometimes, class-, method- or member-level granularity is not enough. In case we need
to assign line-level metadata, we can use one-line source code comments in instead of
annotations. To ensure the comments can be unambiguously removed by a tool after they are
no longer necessary, they must have a specific format, not present in the clean, unannotated
code. In general, lines labeled with metadata have this form:

code_line //special_character(s) metadata

For instance, suppose we want to display code coverage results. We need to assign a piece
of metadata to each executable line of code: whether a line was executed or not. Then a
possible source code snippet can look like this:

public void method() {

int i = 1; //$ executed

if (i == 2) { //$ executed

doSomething(); //$ not executed

}

}

60

6.2. Workflow

A similar example is the assignment of execution counts to individual lines:

public void method() {

int i = 0; //+1

while (i < 2) { //+3

doSomething(); //+2

i++; //+2

}

}

6.2 Workflow
The annotated source code can be checked into a version control system, and thus shared
with the whole development team. This improves awareness about non-functional software
properties like performance and security, which are otherwise not obvious by looking at the
clean code.

However, not all dynamic data are suitable to be shared across the whole team. They
could cause unnecessary pollution and problems when merging the code. For this reason, we
devised two types of scenarios: a local-only and shared workflow.

6.2.1 Local-Only Workflow
Before performing an enhancement or a bug-fix requiring extensive comprehension of the
source code, the developer executes a tool, which annotates the source code according to
collected runtime information.

After the developer finishes the work, the tool will delete all annotations previously
inserted into the source code. This way, unnecessary code pollution and merging problems
are prevented.

Suppose the developer inspected the source code along with the metrics and modified it
with respect to some task. Now he no longer needs the metrics to be displayed – for example,
he starts to work on other task, or he wants to commit his changes into a version control
system (VCS). There are two possibilities:

• He manually executes the tool, instructing it to remove the annotations from the source
code (e.g., by command-line arguments).

• The tool is running in the background, waiting for the VCS command to start. When it
starts, the tool pauses the VCS process, removes the annotations automatically and then
resumes the process.

Either way, the source code submitted to a VCS will be clean and co-workers will not be
aware of the programmer using the tool.

An synopsis of this approach is that the tool is completely independent of a specific IDE.
At the same time, the developer can utilize an IDE of his choice for comprehension, without
constantly switching between it and a separate comprehension tool.

There is one necessary property which must be fulfilled: If the metadata are written into
the source code and subsequently removed from it, all files should remain the same before
performing the analysis (suppose the developer did not modify them meanwhile). If we
call the labeling process label and the removal process remove, the following should hold
regarding the source code (code):

remove(label(code)) = code

61

6. PERSISTING RUNTIME METADATA

6.2.2 Shared Workflow
When using a shared workflow, the tool is executed and the IDE is then used in the same way
as in the local-only workflow. However, the annotations are not deleted after the session ends.
The annotated source code is checked into a version control system, where also other team
members can see it.

Although the annotations can be helpful to the team, they can cause merging problems
and make a version control log hard to read. Furthermore, once the data are written, they can
easily become obsolete as the code changes. Since a change in some part of a program can
affect the behavior of other parts, detecting such discrepancies is difficult, particularly for
runtime-based information.

6.2.3 Workflow Selection
For a specific kind of annotations, it is necessary to decide which workflow to use. To avoid
excessive cognitive burden on the developers, unnecessary metadata should not be kept in the
source code.

Profiling data can be easily trimmed – for example, we can limit the annotation process to
3 most resource-hungry methods. In this case, they are suitable for sharing. After performance
is improved, the annotations can be removed by the programmer committing the fix.

A number of methods callers tends to be large: even in a small-scale application like
EasyNotes, there are more than 160 method calls within the project itself (determined by
Eclipse’s references search using static analysis). Although dynamic analysis reduces the
amount of annotations, it may be restricted to a specific use case the programmer is trying
to debug. Therefore, we suggest to use call graph annotations only in the local workflow. A
similar recommendation holds for dynamic type information annotations.

Faults and flaws should be shared in a version control system to inform all developers
about them. If a specific flaw is fixed, the annotation should be removed in the same commit.
It is, however, questionable whether this is not redundant withe respect to issue tracking
systems.

6.3 Limitations
Selected limitations of our approach will be discussed in this section.

6.3.1 Input of the Analysis
One of the advantages of our approach is its IDE-independence. However, except the source
code, metadata-producing tools certainly require more input: the program execution scenarios,
file paths, names of classes to be analyzed, types of the analysis and its parameters, etc. This
input needs to be provided to a standalone tool – using command-line arguments, configuration
files or GUIs. Nevertheless, we still eliminate the need to switch between two separate views
(the metadata viewer and the editor/IDE) during the phase when the developer inspects the
results.

6.3.2 Automatic Reloading
It is convenient to trigger an analysis while the project of interest is open in an IDE. Therefore,
a file which is currently displayed in the IDE is modified by another process. This can possibly

62

6.3. Limitations

Table 6.1: File-reloading capability of selected IDEs and text editors. © 2017 IEEE

IDE or text editor Manual file reloading Automatic file reloading

supported default

Eclipse supported yes off
IntelliJ IDEA supported yes off
NetBeans supported yes off
jEdit supported yes on
SciTE supported yes on
Vim supported yes off

lead to confusion if the file is not synchronized. The user will not see the results of the analysis
before closing and reopening the given file, which would limit the usability of the tool.

Fortunately, many IDEs and text editors offer a possibility to automatically reload a file
if it is modified by other process. We summarized the possibilities and behavior of selected
popular Java IDEs and text editors in Table 6.1.

We can see that both manual (on-request) and automatic (in background) file reloading
is available in all surveyed applications. Furthermore, in some text editors, automatic file
reloading is turned on by default. When the default option is off, it can be easily adjusting in
the application’s settings. Therefore, we can conclude that file reloading is not an issue at all.

6.3.3 Presentation Limitations
The most prominent limitation of our approach is its usability only for purely textual metadata.
Insertion of graphics, such as graphs, diagrams, etc., is inherently not possible in its current
version. However, Schugerl et al. [222] present an Eclipse plugin SE-Editor which displays
images directly in the IDE code editor – in places where specially-formatted comments are
inserted in the source code (e.g., /*** http://image.url). If these two approaches were
combined and SE-Editor was implemented also for other IDEs and text editors, if would
effectively mean our approach could support also graphical elements.

Another practical limitation is the non-interactivity of our approach. Standard IDE plugins
offer rich interaction possibilities. In contrast to them, the inserted comments comments are
generally static and non-navigable. However, annotations offer some interaction possibilities
in many IDEs. Since they can be programatically queried, by annotating the source code of a
program, we could also ease querying of run-time information associated with source code
elements. All standard tools which can be used on annotations are applicable. For example,
the Find Usages capability of an IDE may be used to find all hotspots or potential flaws in
the code. It is possible to use standard mouse and keyboard navigation (e.g., Ctrl+click)
on the class names in the caller lists or concrete type annotations. Each flaw can have its
documentation, displayed in a tooltip above the flaw type.

6.3.4 Applicability to Other Languages
Annotation-based labeling require the given language to support attribute-oriented program-
ming. Examples of such languages are Java and C#.

Comment-based labeling requires the given language to have one-line comments which
can be appended at the end of lines. The range of languages supporting one-line comments is
very broad.

63

6. PERSISTING RUNTIME METADATA

6.4 Related Work
Now we will present related works.

6.4.1 Code Annotation
Concern annotations [246] are annotations acting as hints for developers, informing them
about intentions behind a code element. Originally, they were intended to be inserted manually
into the source code, preferably by programmers writing the code. In contrast to them, we
discuss the automated insertion of metadata to source code using dynamic analysis, both in
the form of annotations and comments, and the options of their removal.

Joy et al. [105] presented an approach to automatic C source code back-annotation using
information obtained at runtime. However, they collected only timing and power information,
which is later used in embedded software simulation. Therefore, their annotations are not
intended for human consumption and program comprehension, as in our approach.

6.4.2 Runtime Information
Senseo [212] displays various information like a number of invoked methods or created
objects, callers, callees and concrete argument types, in an IDE window. However, since
Senseo is an Eclipse plugin, it is IDE-dependent.

An in-situ profiler [20] displays small visuals next to method declarations and calls,
presenting performance data obtained by profiling. The results are not persisted in any way,
though.

6.4.3 IDE Extensions
Lee et al. [133] designed a generic infrastructure for framework-specific IDE extensions.
They try to reduce authors’ work when creating an IDE extension for a new object-oriented
framework. However, providing an infrastructure for multiple different IDEs is out of the
scope of their work.

Asenov et al. [7] present an IDE which enables programmers to query and modify
programs using a combination of source code and other resources. Custom queries can be
written using scripts, and the queries are composable using pipes. While they try to clear the
line between plugin authors and application developers, their approach is currently limited to
a single IDE which they created from scratch. In contrast to them, we try to reuse existing
IDEs as much as possible.

6.4.4 Workspace Sharing
Code Bubbles [32] is an unconventional development environment. Among other features,
it supports sharing parts of source code annotated with values of variables obtained by
debugging, notes, image flags, etc. While the presentation is visually attractive, a specialized
tool needs to be used by all developers to utilize such features. In the case of Java annotations,
any standard IDE can be used.

TagSEA [241] is an IDE extension enabling “social tagging”. The developers can insert
specially-formatted comments into source code. Such marks are then shared in the develop-
ment team. There are two shortcomings: First, the tags in comments are not a part of Java

64

6.5. Conclusion

syntax, thus requiring a special tool support to be processed. Second, they are inserted into
source code manually by programmers.

Source code bookmarks are one of the standard features present in today IDEs. They
allow a developer to mark specific source code lines with notes and later list the bookmarks
and jump to each of them. Collective code bookmarks [85] provide a way to share parts of
developers’ mental models. However, this approach is IDE-dependent and the bookmarks
are not saved to the original source code files which complicates standard procedures like
versioning and merging.

6.5 Conclusion
In this chapter, we discussed the forms of persistence of metadata obtained during executions
of programs – data from dynamic analysis – directly in the pertaining source code files.

Two types of in-code storage formats were suggested: annotations and one-line comments.
Although the latter format can be used in any language and allows line-level granularity, the
former one offers richer interaction possibilities in IDEs.

The metadata can be either used only locally or shared with colleagues. The purpose of
the local-only workflow is to enable independence of a tool on a particular IDE. Therefore,
the programmer can use an environment or text editor of his or her choice. When the metadata
are no longer necessary, they are removed to prevent VCS pollution. On the other hand, the
shared workflow is suitable for metadata which could be useful for the whole team. Their
potential obsolescence and information overload are its disadvantages.

Although we were focused on runtime information, the approach can be extended to map
practically any machine-produced information to a piece of code – output from static analysis,
build log messages, etc.

65

Chapter 7

Location of GUI Concepts in Source
Code

Developers understand a program only when they are able to mentally connect structures
in the program with real-world concepts [25]. Naturally, this connection can be established
much more easily if the vocabulary used in the source code resembles the domain terms
displayed in the GUI of a running program.

One of the most frequent activity performed by a programmer is feature location – finding
an initial source code location implementing a given functionality [59]. To perform it,
developers rarely use complicated feature location tools and plugins [147], and rely on simple
textual search instead [53].

Consider a developer trying to fix a bug in a program he does not know. He will probably
start with an exploration of a running UI (user interface) relevant to the bug. He will start to
concentrate on particular GUI items, like buttons and menu items causing the bug to manifest.
Then, he will try to search for the labels of these GUI items (button captions, menu names)
in the source code of the program, using standard search functionality of an IDE (integrated
development environment). The IDE will search the (static) source code of the program,
producing a list of all results – potentially relevant locations in the code.

Sometimes this tactic can be successful, and the programmer can quickly and almost
effortlessly find the code of interest. Another time, the list of results can be empty or contain
too many results. The programmer must use another, more complicated techniques, to find
the relevant code. In this chapter1, we describe a simple simulation study trying to quantify
the potential successfulness of static source code search for GUI terms. We scraped the GUI
of four Java desktop applications and performed an automated search of all strings (and words
contained in them) in the corresponding source code.

We formulate our research questions for this chapter as follows:
RQ7.1 What portion of strings and words displayed in the GUIs of running desktop Java

applications are located in their static source code too?
RQ7.2 Mainly in what types of files are these terms located?
RQ7.3 If some strings are not located in the source code, what are common reasons?

1This chapter uses material from our article [250].

67

7. LOCATION OF GUI CONCEPTS IN SOURCE CODE

7.1 Method
We automatically extract strings from a running GUI of a few applications and try to search
for these strings (and their parts) in the source code of the corresponding program.

In Table 7.1, there is a summary of the studied objects. We selected three desktop Java
applications from the SF110 [74] corpus of open source projects: FreeMind2 is mind-mapping
software, PDFsam3 splits and merges PDF files, and Weka4 is machine learning software.
Additionally, ArgoUML5 – a UML modeling tool – was selected as a popular, medium-sized
project. The “Java LOC” column in Table 7.1 denotes the number of source code lines in Java
files, measured by the the CLOC6 program.

Table 7.1: The applications used in the study

Application Java LOC GUI strings GUI words

ArgoUML 0.34 195,363 307 2,391
FreeMind 1.0.1 67,357 353 1,050
PDFsam 2.0.0 23,774 65 168
Weka 3.6.13 275,036 592 904

7.1.1 GUI Scraping
Before running the experiment, we ensured English localization was set in all applications,
since the source code is written in English and a mismatch between the code and GUI language
would produce skewed results. In the case of the FreeMind application, language adjustment
in the settings was necessary, all other programs had the language already set correctly.

Every application was fed to a GUI ripper [160] which is a part of the project GUITAR
[177]. The GUI ripper fully automatically opens all available windows in the program, checks
all check-boxes, clicks the menus, etc., in a systematic way. The properties of all widgets are
written in a form of an XML file.

From the XML file, a text and title was extracted for all recorded widgets. The number
of unique strings for each application is in Table 7.1, column “GUI strings”. Examples of
these strings include button labels and tooltips, text-area contents, items in combo-boxes and
many more. We excluded strings shorter than two characters, as they do not represent realistic
search queries for further analysis.

7.1.2 Analysis
Some of the strings contain multiple words, or even lines of text. For this reason, we broke
them into individual words. We define a word as a sequence of three or more letters. The
number of unique words for each application is in the column “GUI words” in Table 7.1.

For each string contained in the GUI, we searched it in the source code files of the
corresponding project. The same process was repeated for individual words.

2http://sourceforge.net/projects/freemind/
3http://sourceforge.net/projects/pdfsam/
4http://sourceforge.net/projects/weka/
5http://argouml.tigris.org/
6http://github.com/AlDanial/cloc

68

7.2. Quantitative Results

Table 7.2: The occurrence counts of whole strings from GUIs in the source code

Application
Occurrences of GUI strings in code

0 1 [2,10) [10,100) [100,∞)

ArgoUML 20.5% 10.4% 42.3% 12.1% 14.7%
FreeMind 7.9% 2.8% 60.6% 13.0% 15.6%
PDFsam 13.8% 13.8% 50.8% 4.6% 16.9%
Weka 8.1% 12.0% 14.0% 30.2% 35.6%

Total 11.2% 9.3% 34.9% 20.1% 24.4%

Table 7.3: The occurrence counts of individual words from GUIs in the source code

Application
Occurrences of GUI words in code

0 1 [2,10) [10,100) [100,∞)

ArgoUML 4.8% 3.1% 13.6% 29.4% 49.2%
FreeMind 0.7% 0.1% 26.0% 32.9% 40.4%
PDFsam 4.8% 7.7% 4.2% 18.5% 64.9%
Weka 6.6% 0.7% 5.9% 32.5% 54.3%

Total 4.2% 2.1% 14.6% 30.4% 48.7%

Regarding the source code, we used tarballs of the same versions as the binaries. The
PDFsam tarball contained also automatically generated JavaDoc API documentation, which
we removed, since such files should not be included in source archives.

The searching was performed fully automatically, via a script. We decided to perform a
case-sensitive search, which should be more precise, especially to locate whole GUI strings.

7.2 Quantitative Results
In this section, we will answer the first two research questions.

7.2.1 Occurrence Counts
First, we would like to simulate a situation when a programmer tries to find a whole GUI
string in the source code. For each string, we determine a number of occurrences in the project
– essentially the number of search results he would get in an IDE. For example, the string
“Generate Data” (a button label in the Weka application) has 2 occurrences in the source
code of the Weka project. Only text files were searched – this behavior is consistent with the
majority of common IDEs which ignore binary files when searching.

In Table 7.2, we can see what portion of all GUI strings has no occurrence in the source
code, exactly one occurrence, from 2 to 10 occurrences, etc. For example, 20.5% of strings
from the ArgoUML GUI were not found in the source code at all. The “Total” row represents
a weighted average for all four projects.

Similar statistics, but for individual words, are located in Table 7.3. This represents the
situation when the programmer is unhappy about the results and starts searching for smaller
parts of the given string – usually words.

69

7. LOCATION OF GUI CONCEPTS IN SOURCE CODE

strings

words

strings

words

strings

words

strings

words

A
rg

o
U
M

L
F
re

eM
in

d
P
D
F
sa

m
W

ek
a

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

.java

.xml

.properties

other

Figure 7.1: Occurrence counts of strings/words divided by file types

An ideal situation arises when a search gives exactly one result. It can (in theory) mean
that the programmer found the sole piece of code relevant to the GUI widget. The higher is the
number of occurrences, the longer he must sift through search results to find the relevant code.
However, a situation when a searched string is not found in the source code is unfavorable, as
the developer would have no idea where to start searching for an implementation of the given
feature.

7.2.2 File Types
Ideally, the search results point to Java source files (*.java). This way, it is possible to
directly find executable code related to some program feature. However, the source code of a
project usually contains many kinds of files – not just Java source files.

For each project, we took all GUI string (and word) occurrences in all files and divided
them by an extension of a file they are located in. In Figure 7.1, there is a graphical represen-
tation of the results.

In ArgoUML, 65% of all occurrences of GUI strings are contained directly in Java
source code files. Although the project uses *.properties files for internationalization, GUI
concepts are often used also as identifiers in Java code. For example, a GUI label “Notation”
is present many times in the source code in the form of the class name Notation.

The FreeMind project uses “properties” localization files, too.
PDFsam uses a system where each key in a *.properties file is the original English

string, and the value is the translated one. Therefore, the GUI strings are located both in
*.java and *.properties files.

While Weka also uses *.properties files for localization, many GUI strings are also
contained in special DSL [124] (domain specific language) files with an extension .ref.

7.3 Qualitative Results
First, we will mention examples of strings not found at all, to answer the last research question.
Then we will select a few strings which were found in the code and show that in this case, the
search can be successful or impractical.

70

7.4. Threats to Validity

7.3.1 Strings Not Present in Code
Many GUI strings were not found in the source code of the application because they were a
part of a universal dialog supplied by the GUI toolkit. For example, color-related terms like
“Saturation” were not found in the FreeMind source tree because they are a component of the
standard Java Swing color chooser dialog. Examples of such strings in ArgoUML and Weka
are “File Name:” – a part of a file selection dialog and “One Side” – a term from the printing
dialog.

The string “http://simplyhtml.sf.net/” displayed in FreeMind was located only in a class
file inside a third-party JAR archive. Therefore, it is invisible for a standard textual search.

The string “Mode changed to MindMap Mode” was not found in the FreeMind source
code as a whole because it was instantiated at runtime from the template “Mode changed to
{0}”. This forces the developer to find smaller portions of a string until a match appears, as
we mentioned earlier.

The label “Show Icons Hierarchically” was not found in the source code of FreeMind
because it was written as “Show Icons &Hierarchically” to specify the keyboard shortcut
Alt+H.

Examples of strings which are not present in the code as a whole, but their parts can be
found there, are help texts, logs and exception stack traces.

Regarding PDFsam, the label “Thumbnail creator:” was not found in the code because
the colon was programatically concatenated.

7.3.2 Strings Present in Code
First, we tried to search for a string which is present exactly once in the FreeMind code:
“Change Root Node”. It was located in a localization file, as a value of a key named “ac-
cessories/plugins/ChangeRootNode.properties_name”. Opening the file “accessories/plugin-
s/ChangeRootNode.java” revealed that this Java class is really relevant to the feature.

Next, we searched for a string present 35 times in the code – “Bubble”. It represents a
node format in the mind-mapping software. This time, the exploration of the results took
more time and we required multiple iterations using different search terms, even with some
dead ends, until we finally found the relevant source code.

Finally, we searched the string “Export” (a menu item), present 1,988 times in the
source code. Just skimming through such a long list is a lengthy activity. Therefore, other
strategies are necessary to efficiently find the feature of interest in the code. For example, the
programmers can reformulate their search queries, use structured navigation (tools like Call
Hierarchy) or debugging techniques [53].

We conclude that in some cases, simple textual searching is a feasible way to find code
relevant to a GUI element. Ideally, a GUI string should be located exactly once (or just a
few times) in the source code, to allow easy finding of source code relevant to a GUI feature.
Furthermore, finding an occurrence in a non-Java file makes it more difficult to find relevant
source code than finding it directly in a Java file.

7.4 Threats to Validity
We will now look at the threats to validity of our study. Construct validity is concerned
with the correctness of the measures. External validity discusses whether the findings can
be generalized. Reliability denotes whether similar results would be obtained by another
researcher replicating the study [215].

71

7. LOCATION OF GUI CONCEPTS IN SOURCE CODE

7.4.1 Construct Validity
While the GUI ripper in the GUITAR suite gives good results when scraping the GUI, it is not
perfect and it could miss some of the strings visible in the user interface.

During an automated search for whole GUI strings in the code, also long texts like
exception stack traces were included. It is not probable that a programmer will actually try
to search for a whole stack trace in the code textually, as-is. Instead, he will directly look at
some of the methods mentioned in the trace.

We performed a case-sensitive search, which is more precise. However, in practice, case-
insensitive search is probably the preferred way, as it is often default in IDEs. In the future,
a case-insensitive search should be also performed to better reflect the manual searching
behavior of programmers.

7.4.2 External Validity
All four applications in our study were desktop Java programs, using the Swing GUI widget
toolkit. However, common contemporary applications have Web and mobile front-ends.
Scraping Web applications could have produced much different results. For example, they
often display texts downloaded from external databases. This could be one of the reasons for
non-presence of GUI strings in the code of these applications.

Even in the world of Java Swing applications, the selected ones represent just a small
sample. However, they are representative of common desktop Java projects, as three of them
were included in the standard SF110 [74] benchmark.

7.4.3 Reliability
The quantitative results were produced chiefly by an automated script. Therefore, the subjec-
tivity of a researcher is eliminated. The strings presented in the qualitative part were selected
manually, but the purpose of this part was mainly illustrative.

7.5 Related Work
Now we will present related work.

7.5.1 GUI Ripping
To rip GUIs, we used the tool GUI ripper [160] which is a part of the GUITAR [177] suite.
Swing UIs are one of the best supported technologies, however, there is a partial support for
SWT, Web, and Android. To crawl highly dynamic Web applications, Crawljax [161] could
be used.

The DEAL method [15] creates a DSL from a GUI. However, the process is not automated
and a user must manually traverse the user interface.

7.5.2 Feature Location Using GUIs
Of course, finding a string from a UI using IDE’s textual search is not a sole option to perform
feature location. GUITA [220] allows to take a snapshot of a running GUI widget. The
snapshot is associated with a method which was last called on the given widget. However,
this approach is dependent on a particular GUI framework.

72

7.6. Conclusion

Another approach, UI traces [259], splits a long method trace into smaller ones, each
associated with a graphical snapshot of the GUI in the given state.

7.5.3 Feature Location in General
There exists a large number of feature location techniques – see [59] for a survey. An example
of a method utilizing source code comments and identifiers is presented by Marcus et al.
[152]. Carvalho et al. [39] use a combination of static and dynamic analysis, specifications
and ontologies to map problem domain concepts to source code elements. However, none of
these approaches use labels directly from GUIs of running programs.

7.5.4 Other Studies
Václavík et al. [271] analyzed words used in names of identifiers in the source code of Java
EE application servers and web frameworks. They tried to determine what portion of these
words are meaningful according to the WordNet database. The more words from the source
code of a project are meaningful, the more understandable it should be. We could perform
a similar experiment, but use a dictionary built from the GUI of an application instead of
WordNet.

7.6 Conclusion
A simple study was performed: We scraped all strings contained in a GUI of four open-source
Java desktop applications and tried to automatically find them (either as a whole or single
words contained in them) in the static source code.

Regarding question RQ7.1: 88.8% of strings and 95.8% of words from GUIs were found
in the source files. However, 24.4% of displayed strings and 48.7% of words were found
at least 100 times, which is a number of results we consider impractical to inspect during
maintenance tasks.

Answering RQ7.2, the GUI terms are often located in Java source code files (67.0% of
strings, 51.4% of words), *.properties localization files, XML and custom DSL files.

To answer RQ7.3, common reasons of a non-presence of a GUI string in the source
code were: a string was a part of a standard dialog, a third-party library, or the string was
dynamically generated at runtime.

In further research, we can replicate the study on Web applications, or study logs in
addition to GUIs. Another idea is to consider a set of GUI words the application’s problem
domain dictionary. The percentage of GUI words present in the source code can be regarded
as a measure of code understandability. For example, if the code contains too few concepts
from the GUI, it can be considered obfuscated.

73

Chapter 8

Searching in Runtime Values

Suppose a developer needs to answer a common question [227]: Where in the source code is
the label displayed in the UI (user interface) of a running program located? Traditional source
code search is performed on static source code, and it does not utilize dynamic information.
In the previous chapter, we shown that such a search often does not produce desired results,
since only a portion of the strings is located in the source code in a form of string constants.
Dynamically generated and localized strings, user input, data obtained from other systems,
and many other strings may not present in the static source code of the application. Instead,
the developer should ask: Which expression contains the given string in its value at runtime?

A question like this could be possibly answered by writing custom scripts and queries in
automated and scriptable debuggers such as Coca [62], FrTime [150] or EXPOSITOR [113].
However, we should take the reality of developers [202] into account: The cost of learning to
use a tool must be lower than the expected benefit of its application. Ideally, the developer
should use a tool immediately or only after minimal training. Even when using existing tools
like a textual search, developers prefer simple queries compared to complicated, sophisticated
ones [53].

Considering the developer already found the source code location related to the UI element,
she will probably want to examine it from the dynamic viewpoint – inspect the concrete
values of variables at a specific moment, view the stack frame, etc. Currently, searching
and debugging are considered separate actions accomplished with different tools. However,
according to multiple empirical studies, these two activities are often interleaved. For example,
based on the results of a field study with professional developers, Damevski et al. [53] argue
there should be better integration between code search, navigation and debugging. Wang et al.
[276] studied developers locating relevant parts of source code; two of three search patterns
the developers used encompassed running and debugging the program.

After finding and inspecting an initial point of investigation, developers often aim to find
other occurrences relevant to this point. For instance, they try to determine where the data
from a certain variable flow [120]. In theory, this is easy to accomplish using approaches such
as dynamic program slicing [1]. In practice, the data can flow through multiple third-party
systems and return back to the inspected application. For example, a user input can be
saved to a database, then retrieved and displayed in another part of the application. Classical
program slicing approaches could fail to find such a connection. Although cross-system slicing
approaches emerge, they suffer from performance issues [26] or are technology-dependent

75

8. SEARCHING IN RUNTIME VALUES

[178].
With the mentioned considerations in mind, we designed RuntimeSearch, described in

this chapter1. It is a variation of a traditional textual search in source code, but in this case,
we are searching in the values of expressions at runtime. A programmer enters a string which
she wants to locate. It can be, for instance, a UI label visible in a running program for which
she wants to find the source code part displaying it; or a string which she hypothesizes is a
value of some unknown variable or expression. If the program is not already running, it is
launched. During the runtime, all evaluated string expression values are being compared with
the searched term. When a match is found, the program execution is paused and a traditional
IDE debugger is opened. The programmer can explore runtime properties of the program like
the call stack and current variable values. Then, she can continue with debugging, running, or
search some string again.

In essence, RuntimeSearch is an extension of a traditional debugging process. In addition
to standard debugging operations like Step In or Continue, a Find In Runtime action is
available. This runtime-search action provides a user interface resembling a simple textual
search dialog, which practically all developers are familiar with. Therefore, the tool should
require almost no training.

The source code of our RuntimeSearch implementation is available online2. A case study
was performed to show the feasibility and usefulness of the technique. It provides us an
answer to our first question:

RQ8.1 What are possible use cases of RuntimeSearch?
As a debugging extension, RuntimeSearch incurs some runtime overhead. Therefore, we

performed a preliminary performance evaluation, asking:
RQ8.2 What is the performance overhead of searching strings in the runtime?
Finally, a controlled experiment on human participants was performed to validate our

approach, trying to confirm the hypothesis:
H8.1 RuntimeSearch improves the efficiency of search-focused maintenance tasks.

8.1 Runtime-Searching Approach
First, we will describe RuntimeSearch from the user’s (programmer’s) point of view. Next,
we will look at its design and implementation.

8.1.1 User’s View
The interaction and user interface of RuntimeSearch was modeled with two principles in
mind:

1. To look similar to a traditional textual search in source code whenever it is possible.
Since code searching is a familiar operation for practically every programmer, this
should make learning the tool easy.

2. To integrate the approach with the debugging infrastructure already present in IDEs and
used by developers.

Each runtime searching begins by triggering the action “Find in Runtime” in an IDE,
which shows a query prompt, where the developer enters the searched text. Subsequently, the
searching process is started in one of three ways:

1This chapter contains material from our article [255].
2https://github.com/sulir/runtimesearch

76

https://github.com/sulir/runtimesearch

8.1. Runtime-Searching Approach

Start searching a string in runtime

A match is found, the program is paused

Put the program into some state

Interact with the program

Inspect the state and call stack, step the program,...

Continue debugging, terminate the program...

need next occurrence

relevant code found

Figure 8.1: A possible example of RuntimeSeach utilization. © 2017 IEEE

• If no program is currently being debugged, a new instance is launched.
• If a debugged program is paused, it is resumed.
• If a debugged program is running, it is left running.

The string is searched from the moment it was entered into a prompt until a match is
found. When this happens, the program is immediately paused using a programmatically
invoked breakpoint. This causes the IDE to highlight the currently executed line and show
current variable values. Furthermore, all debugging features of the given IDE are available –
including the stack frames view, expression evaluation, advanced object state inspections, etc.

When the programmer considers the current search result irrelevant or wants to find the
next occurrence, she triggers the action “Find Next in Runtime”. In case she wants to change
the search string, she chooses the action “Find in Runtime”. The process continues as already
described.

If the developer does not want to search a string anymore, she can continue debugging
with traditional operations like Step In and Step Over or resume the program. At any moment,
it is possible to search the string in the runtime if desirable.

One of many possible examples of the developer’s interaction with RuntimeSearch is dis-
played in Fig. 8.1. However, the process is not prescriptive and can be adapted to developer’s
specific needs. In section 8.2, we will describe multiple usage scenarios.

8.1.2 Principle
We look at a running program as a series of expression evaluations. Consider the following
Java source code excerpt:

77

8. SEARCHING IN RUNTIME VALUES

String var = "text";

var = var.toUpperCase();

It produces the following expression values, in the given order: “text” (a string constant),
“text” (the value of the variable var read on the second line), and “TEXT” (the return value of
the method toUpperCase).

The program is instrumented, so the result of every string expression is captured and
compared to the searched text. Currently, only expressions of type String are captured – it
makes the most sense to compare the searched text only to strings. However, the approach
is not limited to this behavior and in the future, we could convert all objects to their string
representations using a toString-like method.

Namely, we capture the following String expressions: constants, local variables, member
variables, constructor calls, and method calls returning values.

In our early implementation, the evaluated strings are matched against the query using
a simple string containment: if the evaluated string contains the searched text, a match is
found. Again, this is not an inherent limitation of the approach. It can be easily extended
with standard text-search options like “match case”, “whole words only”, regular expression
matching, or advanced features like approximate (fuzzy) string matching.

8.1.3 Implementation Details
Our RuntimeSearch implementation consists of a Java agent (a piece of instrumentation code
which can be attached to any Java program) and a plugin for the IntelliJ IDEA IDE.

The agent is configurable through an argument – a pattern specifying what packages or
classes should be instrumented. This way, it is possible to specify, e.g., whether to include
only application or also system classes.

Instrumentation is performed at the bytecode level. In stack-based virtual machines like
the Java Virtual Machine, each expression evaluation is represented by an instruction pushing
a value on the operand stack, which can be used with advantage.

The IDE plugin is very lightweight and consists mainly of a simple form and a module for
communication with the agent.

8.2 Case Study
Now we will show how searching in the runtime can be useful to perform navigation and
debugging tasks. The demonstration will be performed on Weka3 – an open source Java
machine learning software. It is a Swing GUI (graphical user interface) application with
approximately 350,000 lines of code. A short video with parts of the case study is available
online4.

8.2.1 Finding an Initial Point
One of the questions programmers ask during program maintenance tasks is “Where in the
code is the text in this error message or UI element?” [227] Weka includes a package manager
which displays a list of additional packages. Suppose we want to find the code which retrieves

3https://sourceforge.net/projects/weka/
4https://sulir.github.io/runtimesearch

78

https://sulir.github.io/runtimesearch

8.2. Case Study

package names, such as “AffectiveTweets”. Searching the static source code for the term
“AffectiveTweets” does not give any results, since this string was generated at runtime.

Therefore, we run the application in a debug mode and wait until the main window appears.
Then we trigger the “Find in Runtime” menu in the IDE, enter the query “AffectiveTweets” and
press Find. After choosing the menu “Package manager” in Weka, the program automatically
pauses and the IDE shows us the currently executed line, containing the searched string
expression. We see the first runtime occurrence of the string “AffectiveTweets”, i.e., its origin.
Not only can we notice it was read from a file input stream (it is obvious by reading the source
code), but thanks to the IDE showing a string representation of the stream object at runtime,
we also see its path in the file system – the name of the “package list” file from which the
string “AffectiveTweets” was read.

8.2.2 Searching for Occurrences
After quickly finding the initial point of investigation, it is up to us how to continue. We can
explore the source code, find static references, or debug the program. Another interesting
possibility is to search for all following runtime occurrences of the string “AffectiveTweets”.
This can be achieved by repeatedly triggering the action “Find Next in Runtime” in the IDE
(e.g., using a shortcut) – each time, a new occurrence is found.

This way, we find many precise locations in source code relevant to package name
retrieval and displaying. This includes reading a package list file, manipulation with an object
representing the given package, reading a version list file, GUI code displaying the package
name, and various helper methods. After each step, we are free to explore the current runtime
properties of the program to improve our understanding, or step into a method of interest. For
example, if we are interested how the version file URL is determined, we can step into the
getConnection method while we are in the method getRepositoryPackageVersions(String

packageName).

8.2.3 The Fabricated Text Technique
Instead of just “passively” searching for a string which the application itself displayed, we
can utilize an interesting technique: Enter a made-up string into a text field and search for its
runtime occurrences. This allows us to track the data flow of the string across program layers:
from presentation through model to persistence.

For instance, we open the Weka Bayes Network Editor, start searching for a fabricated
string like “Node987” in the runtime using RuntimeSearch, and create a new node named
“Node987” in the Bayes Net editor. The debugger will immediately pause at the GUI code
processing the node name. By searching for next occurrences, we are being navigated through
more or less specific node-processing and data structure classes. After pressing the Save
button in Weka and continuing the search, we are navigated through methods converting
Bayes network nodes to XML representation and, finally, to the file-saving method.

8.2.4 Non-GUI Strings
Until now, we were searching only for strings present in the GUI in some way. However,
RuntimeSearch is not limited to such texts.

We created a simple layout in the Weka KnowledgeFlow Environment, containing a
DataGrid connected to a Database Server, all with default settings. Weka KnowledgeFlow
contains an option to save the layout file in the KFML format (an XML dialect). We tried

79

8. SEARCHING IN RUNTIME VALUES

Figure 8.2: RuntimeSearch in action: The IDE plugin (1.), an action in Weka (2.), IntelliJ IDEA debug window
and source code view (3.–5.). See the main text for full description. © 2017 IEEE

it, but it does not behave as expected – after selecting this option, a file is saved as JSON
(JavaScript Object Notation) instead.

We view the content of the file in a text editor and choose an excerpt, such as the string
“flow_name”. We search for this excerpt in the runtime using RuntimeSearch (Fig. 8.2, part
1). After triggering the Save action in Weka (part 2 of Fig. 8.2), the program is automatically
paused. We inspect the call stack: three methods at the top are located in a class starting with
“JSON” (Fig. 8.2, label 3). This means during the execution of these methods, the wrong
output format is already selected. Therefore, we click on the fourth item (label 4 in the figure).
Immediately, we see the cause of the bug: The method saveFlow contains a hard-coded call
to JSONFlowUtils.writeFlow (see part 5 of Fig. 8.2).

This is a demonstration how RuntimeSearch facilitates finding where in the project is the
layout-saving code located, while immediately providing a context for debugging (the call
stack inspection and subsequent root cause identification).

8.2.5 Hypothesis Confirmation
The strings searched so far were present either in the GUI or in external resources like files.
RuntimeSearch can go even further. During debugging, developers often form hypotheses
about program behavior [132]. If the programmer has a hypothesis about a presence of a
certain string in a specific member variable, she can utilize field watchpoints in common IDEs.
However, if she does not know which variable is concerned, or even whether it is a variable
and not only a temporary expression, runtime searching is very convenient.

If we want to open the Weka package manager from the main menu while there is no
network connection available, nothing visible happens – even no error message is displayed
in the GUI, which is certainly not user-friendly. We hypothesize Weka is trying to establish an
HTTP connection to load the package list, but it fails. We search for the string “http://” using
RuntimeSearch and click the Package Manager menu item in Weka. The debugger pauses at
the URL creation code. We find out the first part of our hypothesis is confirmed: An HTTP
connection is created and tried to be opened. After a few “Step Over” actions in the IDE, we
see a thrown UnknownHostException is caught, the stack trace is printed to the standard error
stream, but no GUI message window is shown.

80

8.3. Performance

Similar hypotheses could be formed about SQL queries in information systems, regular
expressions in parsers, etc.

8.3 Performance
As a form of a primitive benchmark, we measured the execution time of all unit tests from the
package “weka.core” under three circumstances: without instrumentation, with instrumenta-
tion but without searching, and while searching for a short string during the whole execution.
The execution was performed in debug mode, and system classes were not instrumented. A
mean of three measurements was computed for each condition.

The difference between the plain and instrumented execution was negligible (14.653 vs.
14.908 s). Searching incurred reasonable overhead (38%), the measured time was 20.223 s.

The most prominent slowdown was noticed during the “test instantiation” phase, not
included in the above times. During the instrumented run, it lasted 8-9x more than in the
plain one. This can be attributed to high overhead of the class instrumentation process
itself. Note that this slowdown predominantly affects startup time, further interaction with
the application is swift. Furthermore, this is only an implementation issue, and using an
alternative instrumentation library should improve the performance significantly.

8.4 Quantitative Evaluation
To measure the effect of using RuntimeSearch, we decided to perform a controlled experiment
with human participants. They performed maintenance tasks involving the search of strings in
a large code base. One group of subjects could use RuntimeSearch, while the other group had
only a standard IDE available. Our null and alternative hypotheses are:

H8.1null The efficiency of search-focused maintenance tasks with RuntimeSearch = the
efficiency using only a standard IDE.

H8.1alt The efficiency of search-focused maintenance tasks with RuntimeSearch > the
efficiency using only a standard IDE.

8.4.1 Method
Now we will describe the subjects, objects, tasks and measurement procedures of the study.

Participants

The experiment was performed during three Metaprogramming classes. All participants were
students, although many of them reported they already had work experience.

The total number of participants was 41. However, we excluded one participant since
he did not follow the tutorial correctly and subsequently decided not to use RuntimeSearch
during the tasks despite he was in the control group. Therefore, we processed the data of 40
subjects.

The assignment to groups was random: Upon arrival, each student drew a number with a
number of the computer which (s)he should use. On each computer, there was one version of
the materials available – with or without RuntimeSearch. 21 of the analyzed subjects were
assigned to the treatment (RuntimeSearch) group, 19 to the control group.

81

8. SEARCHING IN RUNTIME VALUES

Objects and Tasks

The study was performed on jEdit5, a desktop Java text editor with approximately 125,000
lines of code. The IDE used during the experiment was IntelliJ IDEA 2018.1 Community
Edition.

First, the participants read a tutorial which included small practical tasks that should they
perform in the IDE. The treatment group used RuntimeSearch in the tutorial, while the tutorial
of the control group contained a review of standard static search and navigation techniques
such as a textual search or “find usages”.

The main part of the experiment consisted of two tasks. The synopsis of the tasks was:
• Task 1: In the Category column of the Plugin Manager installation tab, display all

category names in lowercase.
• Task 2: In the jEdit title bar, show a colon (“:”) instead of a dash (“-”) after a custom

title is set, e.g. “jEdit: Untitled”.
The participants were instructed to try to complete the tasks as soon as possible. If they

could not complete a task, they were asked to the next task after about 30 minutes, but this
limit was not enforced in any way.

One session lasted 1 hour and 30 minutes in total. We performed the experiment in 3
sessions, each with a part of the participants.

Measurement

We used a web form as a primary data collection mechanism. For each completed task, a
subject pasted the textual patch of the changes made in the source code into the form. After
the experiment, we manually inspected the patches and decided whether they are correct or
not.

Task completion time was measured by a time-tracking IntelliJ IDEA plugin. While
the participants were asked to start and stop the timer manually, many of them did not do
this precisely of forgot to use it at all. Fortunately, we also recorded the screens during the
experiment. We inspected the screen recordings and noted the exact time completion tasks
for all participants. One participant opted not to record the screen – we used the information
given in the form in this case.

The independent variable is the usage or non-usage of RuntimeSearch. The dependent
variable is efficiency, defined as the number of successfully completed tasks divided by the
total time consumed on both tasks (in hours). The null hypothesis will be rejected if the
p-value is less than 0.05.

8.4.2 Results
In Table 8.1, there are the complete results of the experiment. Figure 8.3 contains a graphical
comparison of the efficiency of two groups. The median efficiency for the RuntimeSearch
group is 2.89 tasks/hour, while the control group had a median of only 1.80 tasks/hour.
Therefore the RuntimeSearch group achieved 60% higher median efficiency.

We inspected the distribution of the efficiency using histograms. Since the data were not
normally distributed, we performed a one-sided Mann-Whithey U test. The resulting p-value
is 0.0291, which means the result is statistically significant.

5http://www.jedit.org

82

Table 8.1: Detailed results of the RuntimeSearch experiment

(a) the “RuntimeSearch” group

ID
Task 1 Task 2 Efficiency

[tasks/hour]Correct Time [m:s] Correct Time [m:s]

01a yes 14:10 yes 2:27 2.89
01b yes 12:11 yes 1:21 3.55
01c yes 19:49 yes 2:04 2.19
03b no 17:54 yes 3:45 1.11
03c yes 9:45 yes 2:52 3.80

08a yes 10:12 yes 2:55 3.66
08c no 2:47 yes 1:13 6.00
09a yes 26:26 yes 4:40 1.54
09b yes 3:00 yes 1:32 10.59
11a yes 14:08 yes 4:10 2.62

11b yes 12:17 yes 7:20 2.45
14c yes 11:35 yes 3:33 3.17
16a yes 22:32 yes 9:35 1.49
16b yes 6:56 yes 4:02 4.38
16c yes 25:25 yes 2:33 1.72

17a yes 8:18 yes 2:01 4.65
17b yes 12:13 yes 1:29 3.50
17c yes 27:40 yes 1:50 1.63
19a yes 25:14 yes 14:32 1.21
19b no 30:32 no 21:18 0.00

19c yes 3:22 yes 1:46 9.35

Median - 12:17 - 02:52 2.89
Std.dev. - 08:33 - 04:59 2.59

(b) the control group

ID
Task 1 Task 2 Efficiency

[tasks/hour]Correct Time [m:s] Correct Time [m:s]

02c yes 6:34 yes 8:00 3.30
04a yes 8:37 yes 16:28 1.91
04b yes 14:40 yes 8:27 2.08
04c yes 10:50 yes 4:51 3.06
05a yes 15:46 yes 4:29 2.37

05b yes 26:02 yes 2:14 1.70
05c yes 6:02 yes 2:46 5.45
07b no 41:23 - 0:00 0.00
07c no 28:41 no 23:45 0.00
10c yes 8:48 yes 2:18 4.32

12a yes 29:15 yes 9:55 1.23
12c yes 22:35 yes 4:03 1.80
13a no 32:15 no 21:22 0.00
13b yes 42:00 yes 4:36 1.03
13c yes 9:37 yes 2:24 3.99

15a no 33:37 yes 6:51 0.59
15b yes 26:15 yes 10:45 1.30
15c yes 11:33 yes 3:56 3.10
20c yes 9:27 no 18:55 0.85

Median - 15:46 - 04:51 1.80
Std.dev. - 11:57 - 07:00 1.54

83

8. SEARCHING IN RUNTIME VALUES

●

●

RuntimeSearch (2.89) control (1.80)

0
2

4
6

8
1
0

Group

T
a
s
k
s
/h

o
u
r

Figure 8.3: Efficiency of tasks for a group using RuntimeSearch vs. standard IDE features

8.4.3 Threats to Validity
Now we will present internal and external validity threats of the controlled experiment.

Internal Validity

During the skimming of the screen-recorded videos, we found a participant which did not
follow the instructions in the tutorial correctly. Although all participants were explicitly told
to ask the instructor in case of problems, he continued and after a few attempts to use it,
he abandoned RuntimeSearch and used only standard search capabilities of the IDE, thus
effectively re-assigning himself into the control group. Therefore, we decided to exclude this
subject from further processing.

External Validity

Although all participants were students, according to their answers to a question in the form,
75% of them already had work experience in programming. They were all Masters students
who voluntarily selected to attend the Metaprogramming course.

The experiment contained only simple tasks, focused on searching the text displayed in
a running application. However, this fulfills its purpose – since RuntimeSearch is a utility
focused on certain kinds of tasks, there would be no point in selecting problems unrelated
to text search. However, the tasks were selected by the RuntimeSearch author, who might
be biased. In the future, an experiment with other tasks can be performed to strengthen the
external validity.

84

8.5. Related Work

8.4.4 Conclusion
In this experiment, we tried to determine how a group of participants using RuntimeSearch
compares to a group using only standard IDE capabilities when performing search-related
maintenance tasks. The median efficiency of the RuntimeSearch group was 60% higher,
showing a great potential of this approach.

8.5 Related Work
Related work includes unconventional code search techniques, advanced or automated debug-
gers, and concept location approaches.

8.5.1 Searching
A tool by Michail [162] builds a database containing the associations between messages
shown in GUI widgets and their callbacks (along with other related functions). Then a
programmer can search for a message, and associated functions are shown – or vice versa.
In contrast to RuntimeSearch, their approach is static and requires separate support for each
GUI framework. Furthermore, our tool is not limited to GUI messages.

Holmes and Notkin [95] describe an approach when the “find references” capability of
an IDE is filtered using information from dynamic analysis – only methods executed in the
given scenario are returned. Compared to RuntimeSearch, they do not capture nor search in
the values of expressions.

SPOTTER [44] is a framework for the creation of custom search processors in the Pharo
environment. Although such search processors have access also to runtime data, and in theory,
a tool similar to RuntimeSearch could be built, no such search processor was described in the
article.

GUITA [220] allows a programmer to associate a snapshot of GUI widget in a running
application to a method which was last called on the given widget. The disadvantage is its
dependence on a particular GUI framework. Furthermore, we offer searching also in non-GUI
strings.

8.5.2 Debugging
Automated debuggers like Coca [62] or a scriptable debugger by Marceau et al. [150]
perceive an executing program as a set of events. They allow developers to write predicates
describing when the program should pause and scripts automatically performing given actions.
EXPOSITOR [113] adds time-traveling capabilities to such scripts. Although these and
similar systems are more feature-rich than RuntimeSearch, we believe the simplicity of
our approach will allow developers to learn it quickly, which should accelerate its possible
industrial adoption. Instead of writing scripts and queries, RuntimeSearch offers a familiar
user interface of a text search dialog and applies it to runtime.

Whyline [121] allows developers to ask Why and Why Not questions about the observed
program behavior. For example, we can click on a drawn square and ask why it has a specific
color. The relevant piece of code is shown, along with a sequence of steps how the color was
computed. Compared to RuntimeSearch, Whyline operates not only with strings but also
with graphical elements in a program. However, it has multiple limitations. First, it is offline,
i.e., trace-based, which seriously limits its practical adoption because of a massive amount
of data collected [121]. Second, it substitutes, not complements the built-in IDE debugger

85

8. SEARCHING IN RUNTIME VALUES

which many developers are already used to. Third, it uses identifier names to suggest possible
questions, so it relies heavily on good naming.

With object-centric debugging [204], we can place breakpoints on specific object instances
at runtime. The breakpoints are then triggered when this instance is manipulated in a given
way. For example, we could track a specific string instance in a running program. However,
to use object-centric debugging, the program must be already paused and a specific object
instance must be manually selected. RuntimeSearch automatically finds such an instance.

8.5.3 Concept Location
In general, concept location (or feature location) is the process of finding where the given
concept or feature is implemented in the source code [195]. Feature location approaches take
a high-level description of a feature as an input, and they produce a list of code elements
contributing to this functionality. In this sense, RuntimeSearch is not a feature location
approach. On the other hand, one of the possible uses of our tool is to locate UI terms in
the values of expressions in the source code. Therefore, we can consider RuntimeSearch an
auxiliary tool useful in the concept location process.

Chen and Rajlich [42] present feature location as a guided search across the program’s
abstract system dependence graph. Starting from a selected program element, the developer
regulates the feature location process by choosing relevant nodes, while the computer controls
the traversal. Similar to RuntimeSearch, the technique is interactive and alternates the control
between a user and a computer. However, it is purely static and it does not utilize information
from dynamic analysis.

Bohnet and Döllner [28] describe a feature location approach where execution traces
are collected and visualized in a form of a call graph. Then, the developer inspects the call
graph and selects specific points of interest. In a subsequent run, values of parameters or
variables are collected at the specific points, and the graph and source code is annotated
with them. Compared to RuntimeSearch, their approach requires two separate instrumented
executions. In their method, only a small, manually selected portion of variable values is
collected. Finally, their tool is not integrated with an IDE and its ready-to-use debugging
capabilities.

Some feature location approaches (e.g., SITIR [142]) combine dynamic analysis with
information retrieval applied on the source code – this relies on the programmers using proper
identifiers. In contrast to them, we utilize the values of string variables and expressions at
runtime.

A feature location approach by Anwikar et al. [5] utilizes concrete variable values in the
analysis, but only in a very limited way. First, the approach uses partial evaluation, and no real
program execution is performed. Second, the approach is limited to “function variables” in
legacy software – variables which determine the type of an action to be performed, containing
one of a predefined set of values.

FLAT3 [221] and I3 [17] are advanced user interfaces for feature location. Instead of
providing a custom GUI, RuntimeSearch tries to utilize existing IDE capabilities as much as
possible.

One of the open problems of dynamic feature location is the selection of appropriate
program inputs. Hayashi et al. [91] propose a technique to guide the identification of
unexplored scenarios. Since our technique does not aim for a complete feature-code mapping,
only for temporary queries, scenario selection is much less of a concern. A developer executes
a program according to a scenario (s)he is interested in, and the results are specific to this
execution.

86

8.6. Conclusion and Future Work

8.6 Conclusion and Future Work
We presented RuntimeSearch – a simple search engine which, instead of searching in the static
source code, searches in the values of all string expressions of a running program. It applies
a well-known “find text” metaphor in the runtime. Our tool integrates into the debugging
infrastructure of an IDE and extends its capabilities.

In a case study on a 350 kLOC open source system, we have shown how it can be used to
locate an initial investigation point in the program by finding the location displayed in the
GUI. Next, we continued to find other occurrences of the same string to find more (possibly)
related pieces of code. Our tool is helpful also during debugging, when the programmer
hypothesizes about the presence of a certain string in an unknown variable.

During a small benchmark, the overhead of running instrumented code without an active
search was negligible after the start-up (class-loading) period. Searching for a string incurred
and overhead of about 38%. Optimization and a thorough performance evaluation are planned.

In a controlled experiment with human participants, a group using RuntimeSearch achieved
a 60% improvement of efficiency during search-related tasks, compared to a group using
standard IDE features.

The currently implemented version of RuntimeSearch is very limited. The first future
research area is an improvement of the matching options, e.g. regular expression or fuzzy
string matching. Ideally, a programmer would be able to enter a high-level description of a
feature and the program would pause when the feature is executed, which could be regarded
as “feature breakpoints”.

Sometimes we encountered a situation when multiple “Find Next in Runtime” operations
in a row pointed to the same statement. This happened mainly in loops which contained
the searched string expressions in their body. Adding an option to automatically skip such
occurrences is an interesting future work idea. Similarly, we could limit the search granularity
by pausing only at one occurrence during a method call.

Storing previous occurrences and thus enabling the “Find Previous” operation could be
useful too. Of course, the previous occurrences would be only static source code locations,
since storing runtime state would effectively mean building a time-traveling debugger.

Searching only for String objects is limiting. Extension to numeric values is a viable
option. In many languages, including Java, it is possible to convert an object to its string
representation using a method like toString(). This could be used to perform a text search
in various non-string objects.

87

Chapter 9

Generating Documentation from
Runtime Information

In the previous chapter, we showed how “searching in the runtime” allows for better inte-
gration between runtime values and the static source code, which in turn facilitates certain
comprehension and maintenance tasks. However, after the relevant piece of code is found,
many tasks still remains unsolved. One of them is the comprehension of the behavior of
individual methods.

When developers try to comprehend what a particular method or procedure in the source
code does, or what are its inputs and outputs, they often turn to documentation. For instance,
in Java, the methods can be documented by comments specially formatted according to the
Javadoc specification [125]. Similar standards and possibilities exist in other languages.

However, the API (application programming interface) documentation is often incomplete,
ambiguous, obsolete, lacking good examples, inconsistent or incorrect [268]. In the worst
case, it is not present at all.

Consider the following simplified excerpt from Java 8 API1 – a method getAuhority()

in the class URL and its documentation:

public class URL {

...

/**

* Gets the authority part of this URL.

* @return the authority part of this URL

*/

public String getAuthority() {...}

}

For a person who is not a domain expert in the field of Internet protocols, this documenta-
tion in certainly not as useful as it should be. To get at least partial understanding of what
the method does, he must study the corresponding RFC (Request for Comments) documents,
various web tutorials and resources, or browse the rest of the lengthy API documentation.

Now, consider the same method, but with a documentation containing concrete examples
of arguments and return values:

1https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#getAuthority--

89

https://docs.oracle.com/javase/8/docs/api/java/net/URL.html#getAuthority--

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

public class URL {

...

/**

* Gets the authority part of this URL.

* @return the authority part of this URL

* @examples When called on http://example.com/path?query,

* the method returned "example.com".

* When called on http://user:password@example.com:80/path,

* the method returned "user:password@example.com:80".

*/

public String getAuthority() {...}

}

This kind of documentation should give a developer instant “feeling” of what the method
does and help him to understand the source code.

Creating and maintaining documentation manually is time-consuming and error-prone.
There exist multiple approaches for automated documentation generation [174]. Many of
these approaches work by combining static analysis with natural language processing (NLP)
[234, 154] or repository mining [114]. NLP-based and static analysis approaches have an
inherent disadvantage: they only present information already available in the static source code
in another way. Mining-based methods require large repositories of code using concerned
APIs. Furthermore, none of the mentioned approaches provide concrete, literate string
representations of arguments, return values and states from runtime: at best, they provide
code examples which use the API. While there exist dynamic analysis approaches collecting
run-time values of variables [144, 135], they are not oriented toward textual documentation
generation.

In this chapter2, we describe a method documentation approach based on dynamic analysis.
The program of interest is executed either manually or using automated tests. During these ex-
ecutions, a tracer saves string representations (obtained by calling a toString()-like method)
of the methods’ arguments, return value, and object states before and after executing the
method. For each method, a few sample executions are chosen, and documentation sentences
similar to the exhibit shown above are generated. The generated Javadoc documentation is
then written into the source files.

To show the feasibility of our approach, named DynamiDoc, a prototype implementation
was constructed. It is available at https://github.com/sulir/dynamidoc. We applied DynamiDoc
on multiple open-source projects and performed qualitative evaluation: we described its
current benefits and drawbacks.

We also performed a small-scale quantitative evaluation of the representation-based
approach. The lengths of the generated documentation sentences are analyzed and compared
to the lengths of the methods they describe. Furthermore, we look at the proportion of objects
in the generated documentation which have a custom (overridden) string representation, which
is a prerequisite for this approach to be useful.

9.1 Documentation Approach
Now we will describe the documentation approach in more detail. Our method consists of
three consecutive phases: tracing, selection of examples, and documentation generation.

2This chapter contains material from our articles: [253], [256].

90

https://github.com/sulir/dynamidoc

9.1. Documentation Approach

Listing 9.1: The tracing algorithm executed around each method

1 function around(method)

2 // save string representations of arguments and object state

3 arguments ← []

4 for arg in method.args

5 arguments.add(to_string(arg))

6 end for

7 before ← to_string(method.this)

8
9 // run the original method, save return value or thrown exception

10 result ← method(method.args)

11 if result is return value

12 returned ← to_string(result)

13 else if result is thrown exception

14 exception ← to_string(result)

15 end if

16
17 // save object representation again and write record to trace file

18 after ← to_string(method.this)

19 write_record(method, arguments, before, returned, exception, after)

20
21 // proceed as usual (not affecting the program’s semantics)

22 return/throw result

23 end function

9.1.1 Tracing
First, all methods in the project we want to document are instrumented to enable tracing.
Each method’s definition is essentially replaced by the code presented in Listing 9.1. In our
implementation, we used bytecode-based AspectJ instrumentation; however, the approach is
not limited to it.

The target project is then executed as usual. This can range from manual clicking in a
graphical user interface of an application to running fully automatized unit tests of a library.
Thanks to the mentioned instrumentation, selected information about each method execution
is recorded into a trace file. A detailed explanation of the tracing process for one method
execution follows.

First, all parameter values are converted to their string representations (lines 3–6 in
Listing 9.1). By a string representation, we mean a result of calling the toString() method3

on an argument. For simple numeric and string types, it is straightforward (e.g., the number 7.1
is represented as 7.1). For more complicated objects, it is possible to override the toString()

method of a given class to meaningfully represent the object’s state. For instance, Map objects
are represented as {key1=value1, key2=value2}.

Each non-static method is called on a specific object (called this in Java), which we will
call a “target object”. We save the target object’s string representation before actual method
execution (line 7). This should represent the original object state. In our example from from

3There are some exceptions – for example, on arrays, we call Arrays.deepToString(arr). Similar methods
exist in other languages, such as C# or Ruby.

91

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

the introduction of this chapter, a string representation of a URL object constructed using new

URL("http://example.com/path?query"); looks like http://example.com/path?query.
We execute the given method and convert the result to a string (lines 10–15). For non-void

methods, this is the return value. In case a method throws an exception, we record it and
convert to string – even exceptions has their toString() method. In the example we are
describing, the method returned example.com.

After the method completion, we again save the string representation of the target object
(this, line 18) if the method is non-static. This time, it should represent the state affected by
the method execution. Since the getAuthority() method does not mutate the state of a URL
object, it is the same as before calling the method.

Finally, we write the method location (the file and line number) along with the collected
string representations to the trace file. We return the stored return value or throw the captured
exception, so the program execution continues as it would do without our tracing code.

To sum up, a trace is a collection of stored executions, where each method execution is a
tuple consisting of:

• method – the method identifier (file, line number),
• arguments – an array of string representations of all argument values,
• before – a string representation of the target object state before method execution,
• return – a string representation of the return value, if the method is non-void and did

not throw and exception,
• exception – a thrown exception converted to a string (if it was thrown),
• after – a string representation of the target object state after method execution.

9.1.2 Selection of Examples
After tracing finishes, the documentation generator reads the written trace file which contains
a list of all method executions. Since one method may have thousands of executions, we
need to select a few most suitable ones – executions which will be used as examples for
documentation generation. Each execution is assigned a metric representing its suitability
to be presented as an example to a programmer. They are then sorted in descending order
according to this metric and the first few of them are selected. In the current implementation,
we limit the number of examples for each method to 5.

In the current version of DynamiDoc, we use a very simple metric: execution frequency.
It is a number of times which the method was executed in the same state with the same
arguments and return value (or thrown exception) and resulted in the same final state –
considering the stored string representations. This means we consider the most frequent
executions the most representative and use them for documentation generation. For instance,
if the getAuthority() method was called three times on http://example.com/path?query

producing "example.com", and two times on http://user:password@example.com:80/path

producing "user:password@example.com:80", these two examples are selected, in the given
order.

9.1.3 Documentation Generation
After obtaining a list of a few example executions for each method, a documentation sentence
is generated for each such execution. The generation process is template-based.

First, an appropriate sentence template is selected, based on the properties of the method
(static vs. non-static, parameter count and return type) and the execution (whether an exception

92

9.1. Documentation Approach

Table 9.1: A decision table for the documentation sentence templates

M
et

ho
d

ki
nd

Pa
ra

m
et

er
s

R
et

ur
n

ty
pe

E
xc

ep
tio

n

St
at

e
ch

an
ge

d

Sentence template

static 0 void no no -

non-void The method returned {return}.

any yes The method threw {exception}.

≥ 1 void no The method was called with {arguments}.

non-void When {arguments}, the method returned {return}.

any yes When {arguments}, the method threw {exception}.

instance 0 void no no The method was called on {before}.

yes When called on {before}, the object changed to {after}.

non-void no When called on {before}, the method returned {return}.

yes When called on {before}, the object changed to {after}
and the method returned {return}.

any yes no When called on {before}, the method threw {exception}.

yes When called on {before}, the object changed to {after}
and the method threw {exception}.

≥ 1 void no no The method was called on {before} with {arguments}.

yes When called on {before} with {arguments}, the object
changed to {after}.

non-void no When called on {before} with {arguments}, the method
returned {return}.

yes When called on {before} with {arguments}, the object
changed to {after} and the method returned {return}.

any yes no When called on {before} with {arguments}, the method
threw {exception}.

yes When called on {before} with {arguments}, the object
changed to {after} and the method threw {exception}.

was thrown, or a string representation of the target object changed by calling the method).
The selection is performed using a decision table displayed in Table 9.1. For instance, the
getAuthority() method is non-static (instance), it has 0 parameters, does not have a void
type, its execution did not throw an exception and the URL’s string representation is the same
before and after calling it (the state did not change from our point of view). Therefore, the
sentence template “When called on {before}, the method returned {return}.” is selected.

Next, the placeholders (enclosed in braces) in the sentence template are replaced by actual
values. The meaning of individual values was described at the end of section 9.1.1. An
example of a generated sentence is: “When called on http://example.com/path?query, the

93

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

method returned "example.com".” Note that we use past tense since in general, we are not sure
the method always behaves the same way – the sentences represent some concrete recorded
executions.

Finally, we write the sentences into Javadoc documentation comments of affected methods.
Javadoc documentation is structured – it usually contains tags such as @param for a description
of a parameter and @see for a link to a related class or method. We append our new, custom
@examples tag with the generated documentation sentences to existing documentation. If
the method is not yet documented at all, we create a new Javadoc comment for it. When
existing examples are present, they are replaced by the new ones. The original source code
files are overwritten to include the modified documentation. Using a custom “doclet” [125],
the @examples tag can be later rendered as the text “Examples:” in the HTML version of the
documentation.

9.2 Qualitative Evaluation
First, a qualitative evaluation was performed. We applied our documentation approach
on three real-world open source projects and inspected the generated documentation. Our
research question is:

RQ9.1 What are the strengths and weaknesses of DynamiDoc?
The mentioned open source projects are:
• Apache Commons Lang4,
• Google Guava5,
• and Apache FOP6.

The first two projects are utility libraries aiming to provide core functionality missing in the
standard Java API. To obtain data for dynamic analysis, we executed selected unit tests of
the libraries. The last project is a Java application reading XML files containing formatting
objects (FO) and writing files suitable for printing, such as PDFs. In this case, we executed
the application using a sample FO file as its input.

A description of selected kinds of situations we encountered and observations we made
follows.

9.2.1 Utility Methods
For simple static methods accepting and returning primitive or string values, our approach
generally produces satisfactory results. As one of many examples, we can mention the
method static String unicodeEscaped(char ch) in the “utility class” CharUtils of Apache
Commons Lang. The generated sentences are in the form:

When ch = ’A’, the method returned "\u0041".

For many methods, the Commons Lang API documentation already contains source code
or pseudo-code examples. Here is an excerpt from the documentation of the aforementioned
method:

CharUtils.unicodeEscaped(’A’) = "\u0041"

4https://commons.apache.org/lang/
5https://github.com/google/guava
6https://xmlgraphics.apache.org/fop/

94

https://commons.apache.org/lang/
https://github.com/google/guava
https://xmlgraphics.apache.org/fop/

9.2. Qualitative Evaluation

Even in cases when a library already contains manually written code examples, Dynami-
Doc is useful for utility methods on simple types:

• to save time spent writing examples,
• to ensure the documentation is correct and up-to-date.

The latter point is fulfilled when the tool is run automatically, e.g., as a part of a build process.
Sufficient unit test coverage is a precondition for both points.

9.2.2 Data Structures
Consider the data structure HashBasedTable from Google Guava and its method size()

implemented in the superclass StandardTable. The DynamiDoc-generated documentation
includes this sentence:

When called on {foo={1=a, 3=c}, bar={1=b}}, the method returned 3.

Compare it with a hypothetical manually constructed source-code based example:

Table<String, Integer, Character> table = HashBasedTable.create();

table.put("foo", 1, ’a’);

table.put("foo", 3, ’c’);

table.put("bar", 1, ’b’);

System.out.println(table.size()); // prints 3

Instead of showing the whole process how we got to the given state, our approach displays
only a string representation of the object state ({foo={1=a, 3=c}, bar={1=b}}). Such a form
is very compact and still contains sufficient information necessary to comprehend the gist of a
particular method.

9.2.3 Changing Target Object State
When the class of interest has the method toString() meaningfully overwritten, DynamiDoc
works properly. For instance, see one of the generated documentation sentences of the method
void FontFamilyProperty.addProperty(Property prop) in Apache FOP:

When called on [sans-serif] with prop = Symbol, the object changed to

[sans-serif, Symbol].

Now, let us describe an opposite extreme. In the case of Java, the default implementation
of the toString() method is not very useful: it displays just the class name and the object’s
hash code. When the class of interest does not have the toString() method overridden,
DynamiDoc does not produce documentation of sufficient quality. Take, for example, the
generated documentation for the method void LayoutManagerMapping.initialize() in the
same project:

The method was called on

org.apache.fop.layoutmgr.LayoutManagerMapping@260a3a5e.

While the method probably changed the state of the object, we cannot see the state before
and after calling it. The string representation of the object stayed the same – and not very
meaningful.

Although this behavior is a result of an inherent property of our approach, there exists a
way how this situation can be improved: to override toString() methods for all classes when
it can be at least partially useful. Fortunately, many contemporary IDEs support automated

95

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

generation of toString() source code. Such generated implementations are not always
perfect, but certainly better than nothing.

We plan to perform an empirical study assessing what portion of existing classes in
open source projects meaningfully override the toString() method. This will help us to
quantitatively assess the usefulness of DynamiDoc.

9.2.4 Changing Argument State
The current version of DynamiDoc does not track changes of the passed parameter values. For
example, the method static void ArrayUtils.reverse(int[] array) in Apache Commons
Lang modifies the given array in-place, which is not visible in the generated documentation:

The method was called with array = [1, 2, 3].

Of course, it is possible to compare string representations of all mutable objects passed as
arguments before and after execution. We can add such a feature to DynamiDoc in the future.

9.2.5 Operations Affecting External World
Our approach does not recognize the effects of input and output operations. When such an
operation is not essential for the method, i.e., it is just a cross-cutting concern like logging, it
does not affect the usefulness of DynamiDoc too much. This is, for instance, the case of the
method static int FixedLength.convert(double dvalue, String unit, float res) in
Apache FOP. It converts the given length to millipoints, but also contains code which logs an
error when it occurs (e.g., to a console). A sample generated sentence follows:

When dvalue = 20.0, unit = "pt" and res = 1.0, the method returned

20000.

On the other hand, DynamiDoc is not able to generate any documentation sentence for
the method static void CommandLineOptions.printVersion(), which prints the version
of Apache FOP to standard output.

9.2.6 Methods Doing Too Much
Our approach describes methods in terms of their overall effect. It does not analyze individual
actions performed during method execution. Therefore, it is difficult to generate meaningful
documentation for methods such as application initializers, event broadcasters or proces-
sors. An example is the method void FObj.processNode(String elementName, Locator

locator, Attributes attlist, PropertyList pList). An abridged excerpt from the
generated documentation follows.

The method was called on ...RegionAfter@206be60b[@id=null] with

elementName = "region-after", locator = ...LocatorProxy@292158f8,

attlist = ...AttributesProxy@4674d90

and pList = ...StaticPropertyList@6354dd57.

9.2.7 Example Selection
The documentation of some methods is not the best possible one. For instance, the examples
generated for the method BoundType Range.lowerBoundType() in Google Guava are:

96

9.3. Quantitative Evaluation

When called on (5..+∞), the method returned OPEN.

When called on [4..4], the method returned CLOSED.

When called on [4..4), the method returned CLOSED.

When called on [5..7], the method returned CLOSED.

When called on [5..8), the method returned CLOSED.

This selection is not optimal. First, there is only one example of the OPEN bound type –
but this is only a cosmetic issue. The second, worse flaw is the absence of a case when the
method throws an exception (IllegalStateException when the lower bound is −∞).

The method Range encloseAll(Iterable values) in the same class has much better
documentation, which shows the variety of inputs and outputs (although ordering could be
slightly better):

When values = [0], the method returned [0..0].

When values = [5, -3], the method returned [-3..5].

When values = [0, null], the method threw

java.lang.NullPointerException.

When values = [1, 2, 2, 2, 5, -3, 0, -1], the method returned [-3..5].

When values = [], the method threw java.util.NoSuchElementException.

Improvement of the example selection metric will be necessary in the future. A possible
option is to include the most diverse examples: some short values, some long, plus a few
exceptions.

Furthermore, like in any dynamic analysis approach, care must be taken not to include
sensitive information like passwords in the generated documentation.

9.3 Quantitative Evaluation
In this section, we will present two small-scale studies of the selected aspects which could
affect the usability of the representation-based documentation approach in practice. First, we
will look at the length of the generated documentation. Second, a study of the overridden vs.
default string representation in the generated documentation is performed.

9.3.1 Documentation Length
In order to be useful, a summary of the method should be as short as possible, while retaining
necessary information. Therefore, we decided to perform a quantitative evaluation regarding
the length of generated summaries, asking the following research question:

RQ9.2 What is a typical length of documentation sentences generated by DynamiDoc?

Method

First, we ran all tests from the package org.apache.commons.lang3.text from Apache
Commons, while recording execution data. Next, we generated the documentation sentences
– at most five for each method. Finally, we computed statistics regarding the length of the
generated documentation sentences and the length of the methods’ source code.

The following metrics were computed:

• the length of each sentence in characters,

97

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

Characters/sentence

D
e

n
s
it
y

0 100 200 300 400 500

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

0
.0

0
8

Figure 9.1: Length of a documentation sentence (histogram)

• the “proportional length” – the length of each sentence divided by the length of the
corresponding method’s source code (in characters).7

Results

In Figure 9.1, there is a histogram of lengths of individual documentation sentences. The
average (mean) length of a sentence is 137 characters, the median is 117.

In the histogram, we can see the vast majority of documentation sentences is 30-300
characters long.

Figure 9.2 displays a histogram of proportional lengths. On average, one documentation
sentence has 0.104 of the length of the method it describes. The median value is 0.096.

It is visible that a vast majority of documentation sentences is shorter than 20-30% of the
method it describes.

Threats to Validity

It is disputable whether a length of a sentence is a good measure of comprehensibility.
However, it is clear that too long sentences would require more time to read. By ensuring the
sentences are short enough, we filled the first requirement of a good summary.

While documentation sentences are written in natural language, the methods’ source code
is written in a programming language. Therefore, comparing these two lengths might not be
fair. However, our aim was only to roughly estimate the reading effort, rather than perform a
comprehension study.

7Note that the proportional length was chosen only as an arbitrary relative measure to compare the length of
the sentence to the length of the method. We do not try to say that one sentence is enough to comprehend the
whole method – it is difficult to automatically determine what number of sentences is necessary to comprehend
a method without performing a study with human subjects. In general, no number of documentation sentences
can precisely describe possibly infinite scenarios encompassed in the method’s source code.

98

9.3. Quantitative Evaluation

Sentence length / method length (characters)

D
e

n
s
it
y

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8
1

0
1

2
1

4

Figure 9.2: Length of a documentation sentence divided by the length of the method it describes (histogram)

Regarding external validity, the presented results were obtained by an analysis of a single
package of tests in a specific library. However, we inspected also other packages which
provided results not too different from the presented ones.

Conclusions

By measuring the length of sentences and methods, we tried to estimate the reading effort of
the documentation and the method source code itself.

According to the results, an average sentence is around 10 times shorter than the method it
describes. Of course, reading one example (sentence) is rarely sufficient. Nevertheless, even
if the programmer read 3 sentences per method, it would be only 30% of the full method’s
source code length.

In this study, we did not try to determine whether the generated documentation sentences
contain enough information to be useful. This would require performing an experiment with
human participants, and it is left for future work.

9.3.2 Overridden String Representation in Documentation

For our documentation to be meaningful, the toString method should be overridden in as
many classes as possible. In the following small-scale study, we tried to estimate what propor-
tion of objects contained in the generated documentation (target objects, parameters, return
values) had this method overridden and what proportion relied on the default implementation.
The following research question was asked:

RQ9.3 What portion of objects contained in DynamiDoc-generated sentences has a
custom string representation?

99

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

Table 9.2: The numbers of objects with overridden/default string representations in randomly sampled documen-
tation excerpts

Project Overridden Default

Apache Commons Lang 27 3
Google Guava 22 5
Apache FOP 21 2

Total 70 (87.5%) 10 (12.5%)

Method

We used the documentation of Apache Commons Lang, Google Guava and Apache FOP,
generated during the qualitative analysis. From each of these three projects, we randomly
selected 10 automatically documented methods. For every method, we selected the first
documentation sentence.

Next, we manually inspected these 30 sentences. Each of the sentences contained one
or more representations of target objects, parameters or return values. For every string
representation, we determined whether it is default (only the class name and the hash code) or
overridden (any representation other than default).

Results

The results are presented in Table 9.2. We can conclude that in our study, 87.5% of the
documented objects had the toString method meaningfully overridden. The other 12.5%
relied on the default implementation, which displays only the class name and the object’s
hash code.

Although the number of objects with an overridden implementation is relatively high, note
that not all overridden implementations are actually useful. Some of the string representations
we encountered showed too little of the object’s properties, so they did not help in the
comprehension of a specific method.

9.4 Related Work
In this section, we will present related work with a focus on documentation generation and
source code summarization. The related approaches are divided according to the primary
analysis type they use – static analysis (sometimes enhanced by repository mining) or dynamic
analysis.

9.4.1 Static Analysis and Repository Mining
Sridhara et al. [233, 234] generate natural-language descriptions of methods. The generated
sentences are obtained by analyzing the words in the source code of methods; therefore, it
does not contain examples of concrete variable values which can be often obtained only at
runtime. In [235], they add support for parameter descriptions, again using static analysis
only.

McBurney and McMillan [154] summarize also method context – how the method interacts
with other ones. While the approach considers source code outside the method being described,
they still use only static analysis.

100

9.4. Related Work

Buse and Weimer [36] construct natural language descriptions of situations when excep-
tions may be thrown. These descriptions are generated for methods, using static analysis.

Long et al. [145] describe an approach which finds API functions most related to the
given C function. If adapted to Java, it could complement DynamiDoc’s documentation by
adding @see tags to Javadoc.

Moreno el al. [166] automatically document classes instead of methods. Their natural
language descriptions utilize class stereotypes like “Entity”, determined using source code
analysis.

The tool eXoaDocs [114] mines large source code repositories to find usages of particular
API elements. Source code examples illustrating calls to API methods are then added to
generated Javadoc documentation. In section 9.2.2, we described the difference between
source code based examples and examples based on string representations of concrete variable
values. Furthermore, the main point of source code examples is to show how to use the given
API. Therefore, the descriptions of results or outputs are often not present in the examples.

Buse and Weimer [37] synthesize API usage examples. Compared to Kim et al. [114],
they do not extract existing examples from code repositories, but use a corpus of existing
programs to construct new examples.

The APIMiner platform [164] uses a private source code repository to mine examples. The
generated Javadoc documentation contains “Examples” buttons showing short code samples
and related elements.

9.4.2 Dynamic Analysis
Hoffman and Strooper [93] present an executable documentation approach. Instead of writing
unit tests in separate files, special markers in method comments are used to mark tests.
Each test includes the code to be executed and an expected value of the expression, which
serves as specification and documentation. Compared to our DynamiDoc, they did not utilize
string representations of objects – the expected values are Java source code expressions.
Furthermore, in the case of DynamiDoc, the run-time values can be collected from normal
program executions, not only from unit tests.

ADABU [52] uses dynamic analysis to mine object behavior models. It constructs state
machines describing object states and transitions between them. Compared to our approach
which used class-specific string representations, in ADABU, an object state is described
using a predicate like “isEmpty()”. Furthermore, they do not provide examples of concrete
parameter and return values.

Lo and Maoz [144] introduce a combination of scenario-based and value-based specifica-
tion mining. Using dynamic analysis, they generate live sequence charts in UML (Unified
Modeling Language). These charts are enriched with preconditions and postconditions con-
taining string representations of concrete variable values. However, their approach does
not focus on documentation of a single method, its inputs and outputs; rather they describe
scenarios of interaction of multiple cooperating methods and classes.

Tralfamadore [135] is a system for analysis of large execution traces. It can display the
most frequently occurring values of a specific function parameter. However, it does not
provide a mapping between parameters and a return value. Furthermore, since it is C-based, it
does not present string representations of structured objects.

TestDescriber by Panichella et al. [187] executes automatically generated unit tests and
generates natural language sentences describing these tests. First, it differs from DynamiDoc
since their approach describes only the unit tests themselves, not the tested program. Second,
although it uses dynamic analysis, the only dynamically captured information by TestDescriber

101

9. GENERATING DOCUMENTATION FROM RUNTIME INFORMATION

is code coverage – they do not provide any concrete variable values except that present literally
in the source code.

FailureDoc [287] observes failing unit test execution. It adds comments above individual
lines inside tests, explaining how the line should be changed for the test to pass.

SpyREST [231] generates documentation of REST (representational state transfer) ser-
vices. The documentation is obtained by running code examples, intercepting the commu-
nication, and generating concrete request-response examples. While SpyREST is limited to
web applications utilizing the REST architecture, DynamiDoc produces documentation of
any Java program.

@tComment [265] is a tool using dynamic analysis to find code-comment inconsisten-
cies. Unlike DynamiDoc, it does not produce new documentation – it only checks existing,
manually written documentation for broken rules.

9.5 Conclusion and Future Work
In this chapter, we presented DynamiDoc – a novel approach to automated method documen-
tation and its preliminary implementation. It traces program execution to obtain concrete
examples of arguments, return values, and object states before and after calling a method.
Thanks to toString() methods, the values are converted to strings during the program run-
time and only these converted values are stored in a trace. For each method, a few execution
examples are selected, and natural-language sentences are generated and integrated into
Javadoc comments.

We found DynamiDoc is suitable for utility methods and functions manipulating sim-
ple data structures. In complicated methods manipulating many objects, we observed its
weaknesses.

We evaluated DynamiDoc using two small-scale studies. We found out that the generated
sentences are considerably shorter than the methods they describe. Furthermore, the majority
of objects described in the generated sentences have an overridden (non-default) string
representation. We perceive this facts as prerequisites for our approach to be useful.

The approach should facilitate program comprehension – but this statement remains to be
validated in a controlled experiment with human participants. The documentation generated
by DynamiDoc is not intended as a complete replacement for manually written documentation,
but it can be a good complement. Compared to natural language processing and simple static
analysis, automated documentation approaches utilizing dynamic analysis require more effort,
e.g., executing automated tests or running the software manually. An investigation whether
this additional effort is worth the benefits provided by the generated documentation should be
performed.

The currently presented version has some shortcomings which we would like to mitigate
before assessing its effect on code understanding.

First, the string representations of objects are not always ideal. We plan to find out
the current prevalence of toString() methods in Java (and probably C# and other) classes,
determine the “state of the art” in object string representation generation and try to improve it.

Second, we do not have empirical findings what are the attributes of a “useful example”.
Therefore, we used only a very simple metric of execution frequency to sort the example
executions and select the best ones. We would like to investigate, both qualitatively and
quantitatively, what examples are considered the best by developers, and modify the selection
metric accordingly. Existing knowledge in the area of test prioritization [285] and source
code example selection [114] can be adapted and extended.

102

9.5. Conclusion and Future Work

Finally, we could record also the changes of argument states and interactions with external
world (input/output operations) to improve the generated summaries. In cases when summaries
of overall effects of methods are insufficient, describing also individual actions inside them
using runtime values of variables could help.

103

Chapter 10

Visual Source Code Augmentation

Although the documentation generated from runtime data, presented in the previous chapter,
can provide valuable information to a programmer, one of its disadvantage is its form.
It is only a static text attached to a method, not offering any visualization or interaction
possibilities. This is understandable, since the majority of programmers write their programs
using traditional, textual programming languages [6]. They use a standalone text editor or
an integrated development environment (IDE) whose most important component is a textual
source code editor. However, upon a closer look at these “plain text” editors, we can discover
many visual features: from simple syntax highlighting, through underlining of the code
violating code conventions, to information about last version control commits in the left
margin. We call such visualizations source code augmentation. For a quick illustration of
some of them, see Figure 10.1.

There exist surveys about software visualization in general [81] and about its various
subfields, such as architecture [225] or awareness visualization [243]. Maletic et al. [149]
presented a task-oriented taxonomy of software visualization. Sutherland et al. [260] review
ink annotations of digital documents, including program code. In chapter 4, we surveyed the
assignment of metadata to different parts of source code, including a discussion about the
presentation of source code annotations (inside or outside the code). Nevertheless, according
to our knowledge, there is no survey available specifically about visual augmentation of
source code editors. In this chapter1, we present a first systematic mapping study of source
code augmentation approaches and tools, analyzing research papers published during the last
twenty years.

In section 10.1, we define the term source code augmentation and provide a brief overview
of historical development in this area. We describe the method used for the systematic review
in section 10.2. The result of our survey is a taxonomy with seven dimensions (section 10.3)
and a categorized list of the surveyed articles (section 10.4). In chapter 11, we will present an
augmentation approach which integrates source code with sample runtime values of variables.

1This chapter contains material from our submitted article [245], co-authored with Michaela Bačíková and
Sergej Chodarev. They evaluated a part of the primary studies in the selection process (about 25% and 30%,
respectively) and helped during the data extraction (about 30% each). They have also minor contributions in the
taxonomy construction and reporting of the results (about 5%) and took multiple screenshots according to the
instructions of the main author.

105

10. VISUAL SOURCE CODE AUGMENTATION

Figure 10.1: A preview of selected augmentation features in an industrial IDE, IntelliJ IDEA. We can see a
textual description of the last commit date of each line in the left margin. There is also an icon representing
a breakpoint on line 7, which is highlighted also by the red background color. Next, the word “public” is
highlighted because of a code inspection warning. The parameter name label “delimiter:” is only a visual
augmentation drawn by the IDE in addition to the code itself. Finally, in the right margin, there is a mini-map of
warnings (yellow) in the whole file.

10.1 Definition and History
In the research area of virtual reality, an augmented reality system “supplements the real
world with virtual objects” [8]. We would like to apply this terminology to the area of source
code editing. In our case, the “real world” is represented by the textual source code stored in
a file and displayed in a text editor as-is. The “virtual objects” are various line decorations,
icons, coloring, images, additional textual labels and other visual overlays.

10.1.1 Definition
Therefore, we define the term source code augmentation as an approach which displays
additional graphical or textual information directly in plain-text source code. If the code is
editable, we can call this also source code editor augmentation.

Let us make the definition more precise. First, note that the raw source code displayed in
the editor must be the same as the text stored in a file. Projectional editors [273] that use a
different editable (visual) and storage representation are, therefore, out of the scope of this
article. Furthermore, the augmentation must not remove any part of the displayed source code
– this is analogous to the term “diminished reality” in the area of virtual reality2.

Second, by the expression “directly in the code editor”, we mean also the left and right
margin of the editor. Note that many IDEs offer many additional views, such as a package
explorer or a class navigator. These views are clearly outside the scope of source code
augmentation.

Alternative terms to “source code augmentation” are in situ software visualization [88]
and source code annotation [262]. The latter can be easily confused with attribute-oriented
programming (e.g., Java annotations). We decided to use the term augmentation, particularly
for its correspondence with an existing terminology in the field of computer graphics.

10.1.2 Historical View
Probably the most rudimentary source code augmentation feature is syntax highlighting
(coloring), where each lexical unit is highlighted with a specific color and/or font weight
according to its type. One of the first editors supporting real-time source code highlighting
was the LEXX editor [50], developed in the eighties.

Another useful augmentation feature is immediate syntax error feedback, pioneered by the
Magpie system [223], which incrementally compiled the program being written. Erroneous
code fragments were highlighted directly in the editor.

One of the examples from the 90’s is ZStep95 [270]. The expression being currently
evaluated was highlighted with a border directly in the editor. This augmentation was

2While some researchers consider diminished reality a subset of augmented reality [8], we decided to
separate these two cases.

106

10.2. Method

interactive: a graphical output produced by this expression was displayed in a floating window
located next to such a border.

During the last two decades, the advances in computer performance and incremental
analysis algorithms enabled the integration of a multitude of augmentation features into
mainstream IDEs.

10.2 Method
Now we will describe the method used for a systematic mapping study we conducted. A
systematic mapping study is a form of a systematic literature review with more general
research questions, aiming to provide an overview in the given research field.

10.2.1 Research Questions
We were interested in the following two research questions:

RQ10.1 What source code editor augmentation tools are described in the literature?
RQ10.2 How can they be categorized?

10.2.2 Selection Criteria
Inclusion and exclusion criteria are an important part of every systematic review. In our study,
all included articles must fulfill the following criteria:

• It is a journal or a conference article published between years 1998–2017 (inclusive).
• It presents a new tool (or significantly extends an existing one) – e.g., a desktop

application, web application or an IDE/editor plugin.
• The tool visually augments the source code editor.
• The article contains a clear textual and graphical description (picture) of the augmenta-

tion.
At the same time, articles meeting any of the following criteria were excluded:
• Secondary and tertiary studies, items such as keynotes and editorials, articles for which

we could not access a full text.
• Articles describing graphical and semi-graphical languages.
• Projectional editing, hiding and replacing existing code with other information.
• Tools displaying only temporary pop-up windows above code (code completion,

tooltips).
• Standard augmentation present in almost all IDEs (syntax highlighting, standard debug-

ging support, syntax error reporting).

10.2.3 Search Strategy
To obtain a list of potentially relevant articles, we used a combination of keyword search
in digital libraries, forward and backward references search. For an overview of the article
search and selection process, see Figure 10.2.

Keyword Search

First, we performed a keyword search in digital libraries to produce a list of potentially
relevant articles. The search query was constructed according to the principles suggested by

107

10. VISUAL SOURCE CODE AUGMENTATION

Figure 10.2: The systematic survey search process and article selection overview

Brereton et al. [34]: For each element of the systematic review topic (software maintenance,
IDE, source code editor, visualization, augmentation), we found synonyms and related words,
connected them by the logical “OR” operator and then connected the subqueries by the “AND”
operator. The resulting query is:

(software OR program) AND (maintenance OR comprehension OR understanding)

AND (tool OR "development environment")

AND ("source code" OR "source file") AND editor

AND (visualize OR visualization OR display)

AND (augment OR augmentation OR annotate OR annotation)

This query was entered into advanced search boxes of four digital libraries: IEEE Xplore3,
ACM Digital Library (DL)4, ScienceDirect5 and Springer Link6. These four libraries were
chosen because of their popularity in software engineering research [286]. In the case of
ACM DL, we had to accommodate the query to use a different syntax (without changing its
semantics). The search was performed on metadata and full texts. We limited the search to the
field of computer science, using the possibilities available in individual libraries, e.g., in IEEE
Xplore, we excluded articles not contained in the Computer Society DL. We also filtered the
entry types to journal/conference articles with a full text available and the publication year to
1998–2017, written in English.

For all found entries we exported metadata such as titles and abstracts. If the given library
did not offer the export of abstracts, we downloaded them from Scopus7. After removing
duplicate items, this phase produced a list of 3,544 articles.

Then, three of the authors each were given a subset of the articles to evaluate. The
researchers manually decided which of these articles fulfill the selection criteria – first based
on the title and abstract review and then, if the article seemed potentially relevant, by skimming
the full text. The result was a list of 95 selected articles.

References Search

Next, we tried to find relevant articles by examining the references of the 95 articles identified
in the previous phase (keyword search). We were interested both in backward references

3http://ieeexplore.ieee.org
4http://dl.acm.org
5http://www.sciencedirect.com
6http://link.springer.com
7http://www.scopus.com

108

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.sciencedirect.com
http://link.springer.com
http://www.scopus.com

10.2. Method

(literature cited in these articles) and forward references (newer papers citing these articles).
To export the lists of backward and forward references along with all necessary metadata,
we used Scopus. Similarly to the previous phase, we limited the search to English computer
science journal/conference articles published between 1998 and 2017, whenever these options
were available.

Two of the articles were not indexed in Scopus and for these, we extracted the backward
references manually from the full texts; forward references were exported from the digital
libraries of the articles’ origin (ACM DL and ScienceDirect).

We merged duplicate entries between forward and backward reference lists. Next, we
removed papers already present in the keyword search list. This resulted in 2,009 unique
articles.

This set of articles was again manually evaluated by the authors, similarly to the previous
phase – first according to the metadata and then a subset of them considering the full texts.
The result was a list of 41 more papers. The search was non-recursive since we did not extract
the reference lists of these new articles again.

Final List Construction

By combining the results from keyword search and references extraction, we obtained 136
relevant articles. However, 31 of them were describing the same tools as the other ones, only
in a different research stage (idea papers, evaluations, etc.). Two articles were classified as
“not relevant” after a more careful inspection.

Therefore, the final set consists of 103 relevant articles.

10.2.4 Data Extraction
For each article, we tried to find supplementary material on the web, such as manuals,
screenshots, videos and executable tool downloads. We also extracted a tool name from every
article; if the tool was unnamed, we devised a suitable pseudonym based on the keywords
often used in the paper. In rare cases when one article presented more tools, we selected the
most relevant one.

Three of the authors were each given a portion of the tools to classify. Using the full
texts of the articles and available supplementary information, they tried to find similar and
distinguishing characteristics of the tools. In this first round, each researcher gradually formed
his/her own taxonomy (which could be freely inspired by others). A taxonomy consisted of a
number of dimensions (e.g., “visualization type”) with their attributes (e.g., “icon”, “text”).
One tool pertained to one or more attributes of every dimension.

Next, two of the classifying authors and the fourth author merged the taxonomies on a
personal meeting. The three researchers then re-classified their tools accordingly. Finally,
after a discussion, we renamed, split and merged some of the attributes.

The final result is: 1.) a taxonomy with 7 dimensions, each consisting of 2–6 attributes,
and 2.) a classification of all analyzed tools according to this taxonomy.

10.2.5 Threats to Validity
Now we will discuss the validity threats of individual systematic review parts.

Since the article selection process was performed by three authors, the inclusion and
exclusion criteria could be comprehended differently by individual researchers. However,

109

10. VISUAL SOURCE CODE AUGMENTATION

we intensively discussed the criteria in the team, along with the examples of individual tools
matching and not matching the criteria to lower the variability to a minimum.

The terminology in the area (e.g., the expression “source code augmentation”) is not
yet standardized, so we could miss multiple relevant articles. Although the keyword search
results were not compared to any quasi-gold standard, we constructed it also by considering
the results of our previous survey [254] that included multiple articles present in the current
review.

During the backward references search in Scopus, we did not include so-called secondary
documents, i.e. articles not indexed by Scopus but found in the reference lists. However, this
option resulted in many incomplete entries, which would complicate the selection process.

Both the article selection and data extraction was performed by three researchers, each
evaluating a non-overlapping portion of articles. Nevertheless, questionable items were
discussed until a consensus was reached. Furthermore, after each part, one of the authors
checked the list of all relevant articles to ensure the overall quality and to exclude inappropriate
items.

Tools are often a neglected aspect of research, so some papers might not describe all
available features of the given tool. Note that we do not draw any precise quantitative
conclusions about the analyzed articles, such as exact percentages. The main purpose of
this chapter is to offer an overview of the field, where each of the analyzed tools acts as an
example of particular augmentations and a reference for further information.

10.3 Taxonomy
To answer RQ2, we present the resulting taxonomy of source code editor augmentation in
Table 10.1. In this section, we will describe the individual dimensions and their attributes,
while mentioning representative examples of tools.

10.3.1 Source
The source dimension denotes where the data representing the augmentation were originally
available before they were visually assigned to a part of source code. This dimension is
similar to the one presented in our previous work [254].

Approaches categorized as code analyze the source code of a system without executing it,
i.e., using static analysis. This can range from simple markers about the presence of an MPI
(Message Passing Interface) function call on the given line [277] to a sophisticated calculation
of potential deployment costs using static analysis [136]. A very common topic is clone
detection (e.g., CloneTracker [61], SimEclipse [269], SourcererCC-I [218]) and warnings
about bad smells (JDeodorant [267], Stench Blossom [171]).

Data useful for augmentation can be collected by an execution of the program, using some
form of dynamic analysis. These approaches are marked as runtime.

The majority of runtime-sourced tools collect the data during an execution and display
them afterward, when the program has stopped. For instance, IDE sparklines [19] are small
graphics displaying the progress of numeric variable values over time. A common application
is performance profiling (e.g., In situ profiler [20]). An important problem of this kind of
tools is data invalidation: if the source code is modified after the data were collected, the
runtime information may not be valid anymore and the program must be run again. This issue
is rarely discussed in the reviewed articles. A notable exception is Senseo [212], where the

110

Table 10.1: The taxonomy of source code editor augmentation

Dimension Description
and its attributes

Source Where does the data representing the augmentation come from?
code Results of static source code analysis.
runtime Results of the program execution; dynamic program analysis.
human Manually entered information, previously present only in the human mind.
interaction Interaction patterns of a single developer in the IDE or a similar tool.
collaboration Behavior of multiple developers/users and their artifacts (e.g, VCS).

Type Data of what type does the augmentation directly represent?
boolean The augmentation can be only present or non-present.
fixed enumeration One of a set of possible categorical values, the categories are pre-defined

by the tool itself.
variable enumeration One of a set of possible categorical values, the category count is not fixed.
number Numeric values (numbers, time, etc.).
string A text string.
object Another data type (an image, a complex structure, etc.).

Visualization What does the augmentation look like?
color A simple area filled with a background color, a color bar or text foreground

color.
decoration Decoration of the code, such as underline, overline or border.
icon A small rectangular graphical object.
graphics More complicated graphical representations – charts, arrows, diagrams,

photos, etc.
text An inserted text string (including a number written as a text).

Location Where is the visual augmentation displayed?
left To the left of the source code - usually in the left margin.
in code Directly in the code.
right It is right-aligned.

Target To what is the augmentation visually assigned?
line One line.
line range Multiple lines, but without distinguishing characters in individual lines.
character range A number of characters (on one line or multiple lines).
file The whole file.

Interaction How can we interact with the augmentation?
popover A tooltip or a popup with additional information can appear at the place

where the augmentation is displayed.
navigate Performing an action directly on the augmentation navigates us to another

code location, window, website, etc.
change We can edit the displayed information directly by manipulating the aug-

mentation (drag&drop, write, expand, collapse, highlight).
none/unknown The augmentation does not offer interaction possibilities or they were not

mentioned by the authors.

IDE For what IDE/editor is the augmentation implemented?
existing An existing IDE/editor is extended.
custom A tool created by the authors specifically for the purposes described in the

article (or prior works).

111

10. VISUAL SOURCE CODE AUGMENTATION

authors explicitly state the data pertaining to the modified method and its dependencies are
always invalidated.

Another type of tools utilizing the runtime source, live programming environments such
as Impromptu HUD [262] and Gibber [206], display the augmentation in real time as the
program is executing.

For tools utilizing the human source, a programmer must purposefully enter the data
with a sole intention that they will be used by the augmentation. Typical examples are social
bookmarks in Pollicino [85], tags in TagSEA [240] or manual concern-to-code mappings in
Spotlight [205].

On the other hand, interaction data are collected automatically, possibly without the
developer even knowing it (although that would be unethical). A typical example is local
code change tracking for the purpose of clone detection (CnP [100], CSeR [101]). Some tools
also collect data from external applications, for example, HyperSource [87] tracks the user’s
web browsing activity while editing a code part and then augments that part of the code with
potentially relevant browsing history.

As software engineering is not an individual activity, collaboration data are formed nat-
urally as the team communicates and cooperates. These data are utilized by collaboration
approaches. Some of these tools offer an analysis of existing artifacts. For instance, Rational-
izer [31] displays last VCS (version control system) commit times, authors, commit messages
and issues related to each source code. The second common category is represented by
real-time collaborative source code editors, such as Saros [219], Collabode [79] and IDEOL
[54].

Many tools use a combination of multiple methods. For example, Historef [90] auto-
matically collects interaction data – local source code edits – in the background and then
allows the developer to manually merge, split or reorder these edits (the human source) while
highlighting the changes with different colors.

10.3.2 Type
The type of data represented directly by the visual augmentation is denoted by the type
dimension. This can be regarded as an extension of the classical information visualization
theory [38], which recognizes nominal, ordered and quantitative data.

The boolean type means that the augmentation is either present or not, without distinguish-
ing any visual variations. Two most common boolean augmentations are one-type marker
icons and one-color code highlights. For example, Remail [9] displays a marker icon in the
left margin on each line which has a related e-mail available. The iXj plugin [30] highlights
all code matching the given transformation pattern with a green background. Note that the
boolean type is often insufficient to display all necessary information, so it is commonly
combined with interaction possibilities (e.g., tooltips) or displayed only for a limited amount
of time – after a specific action.

Some approaches use a list of predefined values for displaying different augmentation
notations. They can either be firmly stored as a finite list in the tool’s data bank, i.e. it’s a
fixed enumeration; or the number of categories can be changed any time by the user or by the
tool itself, i.e. variable enumeration.

An example of fixed enumeration augmentation can be seen in Syde [89] where a red
left-margin highlight means a severe collaboration conflict and the yellow color represents
moderate conflicts.

A very common application of variable enumeration augmentation is an assignment of a
different color for every concern or feature in the source code. This approach is used with

112

10.3. Taxonomy

variations in at least seven tools: Spotlight [205], CIDE [110], ArchEvol [179], IVCon [217],
FeatureIDE [158], FLOrIDA [4] and xLineMapper [288]. Another common approach is to
assign a specific color for each developer working on a piece of code, used e.g., in ATCoPE
[66]. However, there is a problem with such assignments: The color has only a limited number
of easily distinguishable levels [165]. Without additional visualizations and interactions, the
utility of such approaches would be questionable if the number of elements in the enumeration
(features, people, etc.) raised beyond a reasonable limit.

If the augmentation is represented by a numeric value, e.g. a number of function calls
or time, then we use the type number. For example, Clepsydra [86] calculates and displays
worst-case numbers of processor cycles for individual lines and Theseus [140] displays the
number of function calls in a JavaScript file while the application is running in a browser.

The string type represents a text string which is not enumerated, i.e., we cannot name all
its possible values. For instance, the Live coding IDE [126] shows live values of variables in
the source code editor.

Any other displayed information, such as an image or a complex data structure belongs to
the object type. One such example is SE-Editor [222], which embeds web pages and images
directly into the editor.

10.3.3 Visualization
The visualization dimension relates to the visual appearance of the augmentation. For an
illustration of various visualization kinds, see Figure 10.3.

Color is a very perceivable visual sign and at the same time the most simple one, applicable
to both left or right editor bar and the code text itself. Color bars in the margins, text
background and foreground color in the editor belong to the color category. A tool can utilize
one color (Traces view [3]), multiple distinct colors (Jigsaw [49]) or a color spectrum. When
utilizing the color spectrum, tools can change the hue (vLens [138]), saturation (CodeMend
[210]) or brightness (CnP [100]) according to a numeric value. Note that the code foreground
color is often reserved for syntax highlighting. Therefore its use is very limited – we
encountered only one such tool, IVCon [217], which does not use syntax highlighting at all.

A less notable highlight is usually represented by a text underline, overline, or border,
belonging to the decoration category. A dashed border surrounding a code part is used
in multiple tools, for example, in eMoose [56] it represents code with associated usage
directives, such as threading limitations or reverse TODO references. The XSS marker
plugin [14] utilizes a standard Eclipse visualization form, red squiggle underline, but with a
different meaning – instead of denoting compilation errors, it warns about cross-site scripting
vulnerabilities.

Icons are usually used in editor left bars as small, mostly rectangular and simple graphics.
They can visually represent the metaphor of the given tool, e.g., in CodeBasket [24], an egg
icon in the left margin represents a “code basket egg”, i.e. a part of the programmers mental
model. In other cases they are only attention-catching symbols, e.g., in DSketch [48], red
square icons represent lines containing matches of dependency analysis. Occasionally, icons
are located directly in the code editor (instead of the left margin) as in the ALVIS Live! tool
[98].

More complicated graphical representations such as graphs, charts, arrows, diagrams,
photos, etc. belong to the graphics group. For example, FluidEdt [185] displays heap graphs
in the left margin. I3 [17] offers search similarity and change history views in form of small
charts directly in the editor. The Fractional ownership tool [167] displays code authorship
history as multi-colored stripes for each code line in the right editor part. A prototype “Error

113

10. VISUAL SOURCE CODE AUGMENTATION

(a) color (b) decoration

(c) icons (d) graphics

(e) text

Figure 10.3: Tools with various visualization kinds: (a) Aspect Browser [83] uses text background colors to
identify different aspects of code according to user-defined patterns; (b) eMoose [56] displays a solid border
around TODO comments and adds dashed border decorations to code representing associated usage directives
or reverse TODO references; (c) Pollicino [85] uses icons to represent bookmarks; (d) jGRASP [51] displays
control structure diagram graphics directly in code; and (e) Clepsydra [86] calculates worst-case numbers of
processor cycles and shows them as textual labels next to individual code lines.

notifications” IDE [13] shows visual descriptions of compiler errors – e.g., in case of a name
clash, two relevant code elements are visually connected with a line. DrScheme [71] connects
individual uses of a selected language construct in the code by arrows. Finally, the Cares
plugin [84] displays photos of code-related people in the editor.

Any piece text added to the editor is considered to be a text augmentation. It can be subtle,
as in CeDAR [264], where a clone region is labeled with a number in the corner: e.g., “Clone
1”. Another example is the “ghost comments” approach of Moonstone [116] non-editable
comment-like labels at the end of each line, or the or the Clepsydra tool’s [86] line labeling
with numbers of processor cycles. On the other hand, Code portals [33] embed significant
portions of complementary texts into the code editor, such as relevant source code parts or
visualizations of line differences.

10.3.4 Location
The location dimension denotes the position of the visual augmentation in the editor, which
can either be to the left of the source code, displayed directly in code, or placed in the right
editor part, aligned to the right editor margin. See Figure 10.4 for an illustration.

The left margin, alternatively called gutter or ruler, traditionally displays line numbers
and simple icons (e.g., iMaus [111]). However, it can show also thin color bars (Diver [172]),

114

10.3. Taxonomy

(a) left (b) in code

(c) right

Figure 10.4: Tools with various location kinds: (a) Theseus [140] displays the number of function calls in a
JavaScript code in the left editor part; (b) RegViz [18] highlights regular expressions structure directly in code;
and (c) Stench Blossom’s [171] ambient smell detector that lives on the right edge of the program editor.

thicker color fills (HyperSource [87]), “pills” containing text (Theseus [140]) or even a list of
callers (Stacksplorer [109]).

Among tools displaying augmentation in code, we can distinguish multiple cases. The
jGRASP tool [51] displays a control structure diagram in the indentation area of source code
containing only tabs or spaces so it does not visually overlap with the text. DrScheme [71]
displays arrows directly above code, covering small parts of it; however, this augmentation is
only temporary displayed on mouse hover, which makes it acceptable. ARCC [182] draws
augmentation behind the code in the form of a background color. SketchLink [10] displays
icons directly in the code, but only at the end of lines. Finally, RegViz [18] slightly reflows
the text so that the visual annotations do not overlap it.

Right augmentation components are pinned to the editor edges, which means that if the
IDE window resizes (changes its width), the components move along with its edges. “Color
chips” in CoderChrome [88], displayed in the right part of the editor, are an example of such
a visualization. Their meaning can be configured, e.g., to mark starts and ends of code blocks.
Because the right margin is usually not the central programmer’s focus point, it is an ideal
place to implement ambient, non-disturbing augmentations – such as the Stench Blossom
[171] code smell visualization. Since this location is near the scrollbar, it is also useful for
general overviews: heatmap-colored icons in Senseo [212] referring to available runtime
information in the whole file.

10.3.5 Target
Target denotes the code construct to which the augmentation is visually assigned.

Line augmentations are bound to a single line of code, line range to multiple consecutive
lines. Augmentations displayed in the left margin are practically always assigned to a line or a
line range. For instance, each left-margin crash analysis icon in CSIclipse [183] is related to a

115

10. VISUAL SOURCE CODE AUGMENTATION

Figure 10.5: DrScheme [71], currently named DrRacket – a tool utilizing the popover interaction in form of a
tooltip denoting the number of bound occurrences of particular constructs in code.

particular line (e.g., “line may have been executed”). Line range augmentations are typically
denoted as color bars in the left margin (Featureous [184]) or code background color spanning
whole lines, up to the right margin (EnergyDebugger [11]).

On the other hand, a character range augmentation can mark an arbitrary selection of
individual characters. The augmentation can either stay on one line (e.g., a border decoration
in ChangeCommander [73]) or potentially span multiple lines (background color highlighting
in CodeGraffiti [139]).

Line and character range augmentations are often used in tandem: A left margin icon
marks the line of interest while the decoration (TexMo [191]) or background color (Gilligan
[96]) highlights a more specific source code range in the given line.

If the augmentation relates to the whole code in the currently opened file, then it belongs to
the file category. Such a visualization can spatially correspond to source code parts (jGRASP
[51]), or its placement can be solely a matter of style (Gibber [206]).

10.3.6 Interaction
An icon, text or any other graphics or representation is usually not sufficient to give the user
enough information about the augmentation. Tools usually provide some way of displaying
more data about the particular case, which is usually initiated by the user interacting with a
graphical component representing the augmentation. The interaction dimension describes
the ways of how it is possible to interact with the displayed augmentation.

The most common interaction (if there is any) is a case when a popover (a tooltip or a
popup) with additional information displays after a mouse click or a mouse cursor hovering
over the augmentation. This can be a simple textual tooltip, as depicted in Figure 10.5
(DrScheme [71]), or a multi-line formatted text with a picture and multiple clickable actions
(Cares [84]).

If there is a lot of additional data to display for the augmentation and they would not
fit into a popup, clicking or double-clicking on the augmentation component usually fires a
navigation event, which selects an item in another IDE view/window (traceability links in
Morpheus [65]) or displays the information in some external program, e.g. a web browser (a
bug report page in the case of Rationalizer [31]). If the augmentation is somehow related to
other parts of code, the user is navigated directly to those code parts in the same or another
file – e.g., control-flow and data-flow hyperlinks in Flower [229].

Some tools enable direct manipulation of the augmentation itself using mouse or keyboard
interaction, which changes the displayed information or its appearance. Code portals [33]
allow the developer to edit the displayed inline texts. The FixBugs tool [12] offers drag&drop
refactoring capabilities directly in the source code editor. In Fluid views [58], the interaction
happens in two steps: First, an unobtrusive visual cue changes to an underline decoration
upon a mouse hover. After clicking it, the augmentation fully expands and the related code is
displayed inside the editor.

If the augmentation component is not interactive in any way or the authors of the tool did
not mention any possibilities of interaction in their paper or any supplementary materials, it is

116

10.4. Approaches and Tools

classified as none/unknown.

10.3.7 IDE

The last dimension denotes the IDE or editor, for which the augmentation is implemented.
The solutions are either implemented as plugins into an existing IDE or code editor, or they
are completely new custom environments created by the authors specifically for the purposes
described in their article.

Most of the tools we identified were implemented as Eclipse plugins, which is obvious
given the popularity and open architecture of this IDE. Some of them were created for other
more or less popular IDEs such as Visual Studio (GhostFactor [77]), IntelliJ IDEA (wIDE
[169]) or Brackets IDE (Theseus [140]). Examples of custom tools created from scratch are
Omnicode [108], Shared-code editor [134], Code portals [33] and Code Bubbles[32].

10.4 Approaches and Tools
As an answer to RQ1, we provide a complete list of the surveyed tools in Tables 10.2 and
10.3. The rows are individual tools, sorted alphabetically by the tool name. Each column
represents an attribute of the corresponding dimension.

If the tool contains an augmentation fulfilling the given attribute, this is denoted by a filled
square (�). Otherwise, an empty square (�) is displayed.

Note that the “IDE” dimension has only one attribute displayed since it has two mutually
exclusive attributes. Also note that one tool can contain multiple related or unrelated augmen-
tations (e.g. an icon and color highlighting) or one augmentation fulfilling multiple attributes
(e.g., an icon offering both popover and navigation possibilities).

10.5 Conclusion
We presented a systematic mapping study about visual augmentation of source code editors.
Using keyword and references search combined with manual filtering, we constructed a list
containing 103 relevant tools described in research articles. A taxonomy representing distinct
and similar characteristics of these tools was constructed. It contains seven dimensions:
source, type, visualization, location, target, interaction and IDE. Each tool was categorized
according to this taxonomy, producing a table with article references.

Our main contributions are:
• the definition of the term “source code augmentation”,
• a taxonomy of source code editor augmentation features and
• a categorized list of augmentation tools with references.

This article can be a useful resource for researchers aiming to gain an overview of this area
or finding a particular example of given augmentations. Furthermore, we provide multiple
directions for future work, which we will now describe.

Since we found more than 100 tools augmenting the source code editor area, there is
a need to think about filtering possibilities. Even though some augmentations have only a
limited lifetime, the IDE may easily become visually cluttered. An interesting question is also
how to resolve conflicts when displaying visually overlapping augmentations.

117

Table 10.2: Augmentation tools

Tool Source Type Visualization Location Target Interaction IDE

co
de

ru
nt

im
e

hu
m

an
in

te
ra

ct
io

n
co

lla
bo

ra
tio

n
bo

ol
ea

n
fix

ed
en

um
.

va
ri

ab
le

en
um

.
nu

m
be

r
st

ri
ng

ob
je

ct

co
lo

r
de

co
ra

tio
n

ic
on

gr
ap

hi
cs

te
xt

le
ft

in
co

de
ri

gh
t

lin
e

lin
e

ra
ng

e
ch

ar
ac

te
rr

an
ge

fil
e

po
po

ve
r

na
vi

ga
te

ch
an

ge

no
ne

/u
nk

no
w

n

ex
is

tin
g

ALVIS Live! [98] �
ARCC [182] �
ArchEvol [179] �
ASIDE [283] �
Aspect Browser [83] �

ATCoPE [66] �
BeneFactor [76] �
Cares [84] �
CeDAR [264] �
ChangeCommander [73] �

Cheetah [60] �
CIDE [110] �
Clepsydra [86] �
CloneTracker [61] �
CnP [100] �

Code Bubbles [32] �
Code Orb [146] �
Code portals [33] �
CodeBasket [24] �
CodeGraffiti [139] �

Codelink [266] �
CodeMend [210] �
CoderChrome [88] �
CodeTalk [237] �
Collabode [79] �

CoRED [131] �
CostHat [136] �
CSeR [101] �
CSIclipse [183] �
CssCoco [80] �

Debugger Canvas [57] �
Diver [172] �
DrScheme [71] �
DSketch [48] �
Dynamic text [43] �

Eclipse PTP [277] �
EG [63] �
eMoose [56] �
EnergyDebugger [11] �
Error notifications [13] �

FeatureIDE [158] �
Featureous [184] �
FixBugs [12] �
FLOrIDA [4] �
Flower [229] �

Fluid views [58] �
FluidEdt [185] �
Fractional owner. [167] �
GhostFactor [77] �
Gibber [206] �

Gilligan [96] �
Hermion [211] �

118

Table 10.3: Augmentation tools (continued)

Tool Source Type Visualization Location Target Interaction IDE

co
de

ru
nt

im
e

hu
m

an
in

te
ra

ct
io

n
co

lla
bo

ra
tio

n
bo

ol
ea

n
fix

ed
en

um
.

va
ri

ab
le

en
um

.
nu

m
be

r
st

ri
ng

ob
je

ct

co
lo

r
de

co
ra

tio
n

ic
on

gr
ap

hi
cs

te
xt

le
ft

in
co

de
ri

gh
t

lin
e

lin
e

ra
ng

e
ch

ar
ac

te
rr

an
ge

fil
e

po
po

ve
r

na
vi

ga
te

ch
an

ge

no
ne

/u
nk

no
w

n

ex
is

tin
g

Historef [90] �
HyperSource [87] �
I3 [17] �
IDE sparklines [19] �
IDEOL [54] �

iMaus [111] �
Impromptu HUD [262] �
In situ profiler [20] �
inCode [75] �
IVCon [217] �

iXj [30] �
Jazz Band [99] �
JDeodorant [267] �
jGRASP [51] �
Jigsaw [49] �

JScoper [70] �
Live coding IDE [126] �
Moonstone [116] �
Morpheus [65] �
NLP Eclipse [281] �

Omnicode [108] �
PerformanceHat [46] �
Pollicino [85] �
PyLighter [29] �
Rationalizer [31] �

Refactoring Ann. [170] �
RegViz [18] �
Remail [9] �
Saros [219] �
SE-Editor [222] �

Senseo [212] �
Shared code [134] �
SimEclipse [269] �
SketchLink [10] �
Soot-Eclipse [137] �

Soul [55] �
SourcererCC-I [218] �
Spotlight [205] �
Stacksplorer [109] �
Stench Blossom [171] �

Syde [89] �
TagSEA [240] �
TexMo [191] �
Theseus [140] �
Traces view [3] �

vLens [138] �
wIDE [169] �
xLineMapper [288] �
XSS marker [14] �
YinYang [155] �

Zelda [198] �

119

10. VISUAL SOURCE CODE AUGMENTATION

The underlying data or source code often change after the augmentation is initially
displayed. Invalidation and possible recalculation of augmentations is another important issue,
seldom discussed in the reviewed articles.

Although many articles include empirical evaluation, the visual code augmentation itself is
rarely the main object of the studies. Comparisons of the usability of separate views, in-code
augmentations and their variations are definitely welcome.

120

Chapter 11

Augmenting Code Lines with Runtime
Values

In chapter 9, we presented an automated documentation generation approach using runtime
values of variables. However, this documentation was limited to the description of whole
method definitions, and the result was only a static document. In this chapter1, we will discuss
how to document individual source code lines in symbiosis with an IDE, by designing an
augmentation approach similar to the ones described in chapter 10.

Consider the following excerpt from the method createNumber in class NumberUtils of
Apache Commons Lang2:

exp = str.substring(expPos + 1, str.length() - 1);

While the variable names give the programmer a hint about their meaning, it requires
non-negligible mental effort to construct a mental model of the presented line. Now, consider
the same line augmented with concrete values of variables:

exp = str.substring(expPos + 1, str.length() - 1);

str: "1.1E-700F" expPos: 3 exp: "-700"

The programmer can now intuitively understand that the line extracts the exponent from a
string containing a decimal number in the scientific notation. Furthermore, we can see that
the removal of the last character is necessary because it contains the suffix “F” (float).

To perform an investigation of dynamic program properties, such as concrete values of
variables, developers often use debuggers [129]. For instance, newer versions of IntelliJ IDEA
already display an augmentation similar to the one presented above. However, the use of a
debugger requires additional effort from the programmer. First, we must manually choose
appropriate breakpoint locations (although an approach by Steinert et al. [236] can simplify
this). Next, the program must be executed and the debugger must be guided using the stepping
operations to progressively reveal variable values. At one moment, only one state of the
program is visible and the programmer cannot get an overview of multiple states. Finally,
after these laborious tasks are performed, the obtained dynamic information disappears as
soon as the given lines become out of scope or the debugging session is closed.

1This chapter contains material from our accepted article [257].
2https://commons.apache.org/proper/commons-lang/

121

https://commons.apache.org/proper/commons-lang/

11. AUGMENTING CODE LINES WITH RUNTIME VALUES

Figure 11.1: Sample values augmentation in RuntimeSamp

To tackle this problem, tracing tools and time-traveling debuggers record the program
execution and then allow the programmer to explore any part of the program in any recorded
execution state. Nevertheless, these tools still require the user to manually navigate a large
trace to select the relevant part. The runtime information and the static source code view are
separated, requiring the user to switch between two disconnected views.

There exist several approaches trying to integrate runtime information directly into the
source code editor, but the kinds of information they display is often limited. Senseo [212]
displays information such as lists of callers, callees and dynamic argument types. Tralfama-
dore [135] is limited to argument and return values, IDE sparklines [19] to numeric variable
types.

Other approaches – Tangible code [159] and Pathfinder [189] – display variable values
inline, but they are trace-focused: the programmer browses a trace and manually selects a
point in the history which should be displayed.

Although DynamiDoc [253] collects sample values at runtime, the results are only gen-
erated documentation sentences, not an interactive approach. Krämer et al. [126] integrate
variable values with source code in a live programming environment. Such environments
suffer from performance and scalability problems though.

In this article, we introduce an approach to present sample values of variables to a
developer in an ambient and unobtrusive manner. Executions of tests or the application
itself by a programmer are partially recorded. Then, at the end of each line, a noneditable
comment-like label is displayed in the IDE. Each such label shows the values of the local and
instance variables read or written on the given line, during one sample execution of this line.

A tool embodying this idea, RuntimeSamp, is implemented as a plugin for IntelliJ IDEA
combined with a load-time Java bytecode instrumentation agent. For an illustration, see
Figure 11.1. The source code of RuntimeSamp is available online3.

While the approach itself seems simple, a number of interesting questions arose during
the process of designing it. In this chapter, we devise solutions to the encountered problems –
some naive and some more elaborate – and try to foster future research in this area.

11.1 Object Representation
Since the variable values are to be displayed in the text editor, they should be ideally repre-
sented on one line, using only a small amount of space. For primitive values, such as integers
or floats, this is simple – we use their traditional mathematical notation. The situation is

3https://github.com/sulir/runtimesamp

122

https://github.com/sulir/runtimesamp

11.2. Recording Moment Selection

more complicated for objects composed of many properties. Therefore, we formulate our first
question:

RQ11.1 How to present complicated objects succinctly on a small space?
If we consider only purely textual representations, the most straightforward solution is

to call the “to string” method (e.g., toString in Java) on a particular object. This is also
the solution we used in RuntimeSamp (with a few exceptions, such as manually generat-
ing the array representation or shortening too long descriptions). This approach has its
disadvantages, though. In many languages, generation of the string representation must be
manually programmed for each class. Because it is useful almost exclusively for debugging
purposes, developers often omit it. This leaves us with a default implementation similar to
“MyClass@4a54c0de”, which is obviously not useful.

It is trivial to recursively traverse all member variables of the given object down to primi-
tive values or to the given depth and automatically produce a string in the form “{member1:
{sub-member1: value1, sub-member2: value2, ...}, ...}.” Nevertheless, such a string can be
too long for the majority of objects. An interesting future research idea is to filter the list
of member variables of each object to include only that relevant for comprehension. For
example, we can exclude members representing purely implementation details; or include
only frequently read or recently changed fields. Finding what constitutes a given member
relevant and useful for comprehension remains an open question.

Regarding graphical and semi-graphical representations, a universal way would be to
display a fully collapsed tree of all properties, represented by a clickable plus-sign (�) directly
in the editor. The developer could expand it on demand and show the values of interest. On
the other hand, this approach could affect the ambient nature of RuntimeSamp since it would
require manual actions from the developer.

While there exist methods of graphical representation generation (e.g., the Moldable
Inspector [45]), they suffer from similar shortcomings as the classical toString() – the imple-
mentation is manual, optional and not universal.

11.2 Recording Moment Selection

One variable can be displayed multiple times on each line, every time holding a different
value. Thus the following question arises:

RQ11.2 When exactly should we capture the values of variables?
The following options are available:
• after reading/writing a variable for the first time on this line,
• after the last reading/writing of it,
• at the end of the line.

Note the value will be displayed at the end of the line. To match its visual position with its
meaning, we selected the third option.

Our approach works with physical lines, so even if multiple statements are present on the
same line, each variable is displayed only once in the augmentation.

An alternative would be to display a value directly next to each variable in the code (as in
Tangible Code [159]). While this would improve spatial immediacy by lowering the distance
between the variable occurrence and its value, the source code editor could easily become
cluttered, especially in the case of more verbose object representations.

123

11. AUGMENTING CODE LINES WITH RUNTIME VALUES

11.3 Iteration Selection
The most important problem regarding our approach stems from the fact that program
execution is not sequential. Program constructs such as loops cause one source code line to be
executed multiple times, each time in a possibly different context. Therefore, displaying an
arbitrary sample value can cause confusion. Consider the following augmented source code
excerpt, separately counting the sums of even and odd numbers:

1 for (int n : nums) nums: {1, 2} n: 1

2 if (n % 2 == 0) n: 1

3 even += n; n: 2 even: 2

4 else

5 odd += n; n: 1 odd: 1

Here, each line is augmented with the values recorded during the first time the particular
line was executed. Up to the second line, everything seems to be consistent. However, at
line 3, the value of n suddenly becomes 2, even though on the previous line it was 1. Clearly,
the sample values at lines 1, 2 and 5 were recorded during the first loop iteration, while the
augmentation at line 3 comes from the second one. This happened because the third line was
not executed at all in the first iteration.

It is obvious that we can display only one iteration at a time. This leaves us with a
question:

RQ11.3 How to decide which iteration to display?
The most elementary solution would be to insert a combo box at each line containing a

looping construct (in our case, for at line 1) to enable a selection of a particular loop iteration
from a list. A similar solution was already used, e.g., in compacted sequence diagrams
[173]. However, this would require a nontrivial manual action from the programmer. Imagine
selecting a relevant iteration from a list containing hundreds of items, without knowing any
information about them besides the iteration numbers.

First of all, we need to provide a convenient way to select an iteration in which a particular
line of interest was executed (an iteration which covers it). In RuntimeSamp, we set the “line
of interest” to the line where the text cursor (caret) is currently located. For example, if the
caret is on line 3, we show the second iteration:

1 for (int n : nums) nums: {1, 2} n: 2

2 if (n % 2 == 0) n: 2

3 even += n; n: 2 even: 2

4 else

5 odd += n;

On the other hand, if the cursor is on line 5, the first iteration is displayed:

1 for (int n : nums) nums: {1, 2} n: 1

2 if (n % 2 == 0) n: 1

3 even += n;

4 else

5 odd += n; n: 1 odd: 1

This way, we utilize the text cursor as an implicit pointer to the programmer’s current
focus point.

Of course, many lines can be covered by more than one iteration. The choice of the most
relevant one is most probably task-dependent and remains an open research question.

124

11.4. Iteration Detection

Note that in Figure 11.1, the line with the return false; statement is augmented with a
check mark (X). This is used for lines which were executed during the given iteration but do
not contain any variables.

11.4 Iteration Detection
Although in the previous text, we intuitively worked with the notion of an “iteration”, the
situation is not always that simple. For instance, a loop can contain a call to a method defined
in another file. An iteration statement is thus spatially disconnected from the place of the
manifestation of its effect. Furthermore, such a loop can be located in a library or a system
file which is not instrumented and recorded. Finally, many languages contain a variety of
looping constructs which are difficult to recognize in the compiled bytecode. This leaves us
with a question:

RQ11.4 How to define an iteration in a way which is easy to detect and present?
In RuntimeSamp, we used the notion of forward executions. As long as the program

progresses forward without jumping back, we consider this one iteration, which we call a
“pass”. Since in RuntimeSamp, the recording and augmentation are line-oriented, we consider
only jumps to another line, not the same one. Execution of another method starts a new pass;
however, as soon as this method returns control to the caller, the original pass continues.
Our approach is simple to implement using a local variable called passId, inserted into each
method by instrumentation. This variable is assigned a new value on every method start and
backward jump – from a global variable passCounter, incremented on each read.

For an illustration, see the following code:

1 void caller() {

2 int i = 1;

3 callee();

4 i = 2;

5 }

6 void callee() { doSomething(); }

Lines 2, 3, and 4 are a part of the pass with ID 1; line 6 pertains to pass ID 2.

11.5 Collection Efficiency
While the collection of all variable values in the whole program during the whole execution
gives precise results, it is clearly not practical because of high time overhead and storage
requirements. The following question arises:

RQ11.5 How to collect enough data for sample values presentation while keeping the
overhead reasonable?

In RuntimeSamp, we aim to present sample values at the end of each line. Therefore,
it is convenient to collect values at least once for every line being executed. In the current
implementation, we use a simple logic. In a global array called hits, we keep the number of
times each particular line of the program (identified by its lineId) was executed. As soon as
a hard-coded “hits per line” limit is reached, we stop data collection for the given line.

When combined with the iteration detection approach described in the previous section, the
result is depicted in Algorithm 11.1. Note that to prevent the likely overflow of passCounter,
we first reset the passId to 0 and obtain a new value from passCounter only when the data
will be actually collected.

125

11. AUGMENTING CODE LINES WITH RUNTIME VALUES

Clearly, the presented algorithm, which records the first n executions of each line, is
not ideal. Consider the source code from section 11.3 was executed with nums containing
a thousand even items and one odd item as the last element. We would need to record the
first iteration, then skip recording of 999 iterations and record the last one. In case the array
was dynamically generated, a nontrivial prediction using dynamic analysis would need to
be applied. Otherwise, we need to either capture all executions and sacrifice performance,
or end up with incompletely recorded passes. In the example from section 11.3, with
HIT S_PER_LINE in our algorithm set to 1, two passes are recorded: the first pass containing
lines 1, 2, 3; and the second one containing only line 5.

We performed a preliminary performance evaluation of our approach. In Table 11.1, we
present time overhead of the instrumented runs when compared to plain, non-instrumented
ones (zero means no overhead). The benchmarks come from DaCapo [27], version 9.12-MR1.
Auxiliary libraries and system classes were not instrumented. Beware our implementation is
naive and can clearly be improved.

We may also consider collecting data only for a limited part of the program or an execution
period. For example, the values of relevant variables could augment the source code when the
program crashed due to an uncaught exception.

11.6 Filtering of Variables
A lot of data can visually clutter the editor and cause information overload. Thus our next
question is:

RQ11.6 Which variable values should be displayed and which not?
Currently, we show all variables except same-named variables on the same line – e.g., in

the expression this.var = var, we show only one var. In the future, it is possible to devise
other filtering patterns to achieve the optimal ratio between readability and completeness.

Algorithm 11.1: Variable-recording instrumentation

On each method start do:
passId← 0;

Each time when the executing line is about to change from currentLine to nextLine
do:

if hits[lineId] < HITS_PER_LINE then
hits[lineId]++;
if passId = 0 then

passId← passCounter++;
end
SaveToDb(fileName, currentLine, passId);
for each variable read/written on currentLine do

SaveToDb(passId, name, value.toString())
end

end
if nextLine < currentLine then

passId← 0;
end

126

11.7. Data Invalidation

Table 11.1: Time overhead of instrumented runs

Hits per line
Overhead for benchmark

avrora fop h2 xalan

1 0.78 2.13 1.84 0.88
2 0.89 2.37 2.07 0.93
3 0.98 2.63 2.23 1.19

11.7 Data Invalidation
Our final question is:

RQ11.7 When and how to invalidate the collected variable values?
Currently, as a preliminary form of invalidation, we delete all data on any document edit.

Of course, a more reasonable solution is to delete only data pertinent to statements dependent
on the made changes. However, we can go even further: The augmentation of values which
could be recomputed in a reasonable time (and without requiring additional input) should be
updated in the editor, which would enable partial liveness.

11.8 Conclusion
We regard the source code view as the primary view of the programmer’s interest. Therefore,
we aim to deliver a “feeling of runtime” to the static source code by the means of augmenting
source code editor lines with examples of concrete variable values. Our final goal is to make
runtime information in the editor:

• ambient – using implicit interaction information instead of requiring manual actions,
• unobtrusive – not requiring a change of the developer’s tools or workflow,
• relevant – thus aiming to leverage program comprehension.
Throughout the chapter, we discussed several questions related to these properties. Still,

many questions remain to be answered in future experiments. Particularly, an evaluation
with human participants (industrial developers, students) should be performed, both to quan-
titatively confirm the utility of RuntimeSamp and to provide qualitative insights about the
decisions made when designing it.

127

Chapter 12

Conclusion

To conclude this dissertation, we will summarize the main results, present a list of the most
important contributions and outline future work directions.

12.1 Summary
Our general goal is to improve program comprehension. Therefore, we first examined the
research area and its trends. According to the study performed on the bibliographic data of
research articles, feature location and open source systems were trending. On the other hand,
program slicing and the study of legacy systems were gradually falling.

Being able to build a software system is a prerequisite for program comprehension
activities, particularly for approaches connecting runtime information with the source code.
In our study, an attempt to build about 7,000 Java projects from GitHub ended with a failure
in 38% of cases. The most frequent errors were dependency-related. The probability of a
build failure is associated with the tool used, project size and age.

Before focusing specifically on runtime information, we reviewed multiple approaches
which label parts of the source code with various kinds of metadata. We categorized 25 of
them into a taxonomy with four dimensions: source, target, presentation and persistence.

Then we studied the effect of a certain code labeling approach, concern annotations, on
program comprehension. Thanks to the controlled experiments, we found that the presence of
concern annotations in the source code improves comprehension and maintenance correctness
and time. The measured difference was 33% and 34%, respectively.

Traditionally, concern annotations are inserted into the source code manually. We pre-
sented a simple tool, AutoAnnot, which uses runtime information to write them into the
source code, shifting the source of the metadata (with respect to our taxonomy) from human
to runtime. By integrating the existing results in this area with our findings, we stated that the
overlap between the annotations produced by this tool and the code author’s annotations is
higher than the overlap among at least 3 of 7 non-authors, but lower than the overlap among
two of them.

Next, we studied the possibilities of an internal persistence of runtime metadata. Two
suitable formats were described: annotations for certain element-level data and comments
for line-level metadata. For certain kinds of data, such as critical bottlenecks determined by

129

12. CONCLUSION

profiling, we suggest a shared workflow where the data are checked into a version control
system. For other kinds, we recommend a local-only workflow, which can be perceived as an
IDE-independent form of integration of tools with source code editors.

Programmers often try to find strings displayed in the GUI of a running program in
the source code. In our simulation study performed by GUI-scraping four desktop Java
applications, about 11% of strings and 4% of words were not found in the code at all; 24%
of strings and 49% of words had at least 100 occurrences. About 33% of the found strings
and 49% of words did not occur in Java source files. XML, “.properties” and other file
types require the programmer to perform multiple steps until the feature implementation is
found. Many strings did not have any occurrence because they were dynamically generated
at runtime. To sum up, the strategy of finding the displayed strings using traditional, static
source code search available in the current IDEs is often insufficient or impractical.

The GUI study represents one of the motivational factors for our newly designed approach,
RutimeSearch. Instead of searching in the static source code, it searches in all strings
being evaluated in a running program. When a match is found, the program is paused
and all debugging features of the IDE are available. RuntimeSearch is useful to find an
initial investigation point in the source code, search for multiple occurrences throughout the
application layers, find also non-GUI strings (e.g., the contents of a file buffer) and confirm
hypotheses about strings in the program. We also introduced a “fabricated string technique”
when the programmer searches for a made-up string which he entered into the component of
interest. In a preliminary performance evaluation, the time overhead was near-zero without an
active search, about 38% otherwise. A controlled experiment with human participants shown
a 60% improvement of efficiency during maintenance tasks focused on searching displayed
strings.

After programmers find the relevant portion of the code, they often read the documentation
of the methods, which should ideally contain useful examples. We introduced DynamiDoc, a
documentation generator utilizing runtime information. It collects string representations of
arguments, return values, thrown exceptions and current object changes. Then, it generates
documentation sentences containing samples of these collected values. In a qualitative
evaluation, we found it suitable particularly for utility methods and methods manipulating
simple data structures. On the other hand, in complicated methods manipulating many objects,
we observed its weaknesses. As a form of preliminary quantitative evaluation, two findings
were presented. First, an average length of a documentation sentence is approximately 10%
of the associated method length. Second, 88% of objects taken from a small sample had a
custom toString method, which is a prerequisite for the usefulness of DynamiDoc.

As an alternative to the documentation of whole methods using plain-text descriptions, we
presented a source code augmentation approach, RuntimeSamp. The main idea is to display
sample values of variables on each source code line, using an IDE plugin. We discussed
questions which should be answered for our approach to be useful and provided partial
solutions to the outlined problems. Currently, the objects are displayed as strings (using the
toString method) and recorded at the end of lines. To select an iteration which should be
displayed, we utilize the text caret as a pointer to the programmer’s attention. Time overhead
of RuntimeSamp is currently about 140%, so optimization is necessary in the future.

Since RuntimeSamp is a visual source code augmentation approach, we complemented it
with a systematic mapping study of similar tools. By combining keyword search, references
inspection and manual filtering, we obtained a list of 103 academic tools displaying visual
overlays directly in the source code editor. They were categorized in a taxonomy with 7
dimensions: source, type, visualization, location, target, interaction and IDE.

130

12.2. Contributions

12.2 Contributions
First, we will summarize the major contributions to the research field of software engineering,
mainly to the subfield of program comprehension using dynamic analysis.

• We performed a large-scale study of Java build failures, providing empirical data about
build failure probability and error types (chapter 3).

• A taxonomy of source code labeling was devised in chapter 4.
• Two controlled experiments showed the causality between the presence of concern

annotations in the source code and comprehension/maintenance correctness and time.
These experiments were conducted in collaboration with Milan Nosál’, see chapter 5.

• We provided empirical evidence about the presence, occurrence counts and location
types of strings from the GUIs of running desktop programs in the source files (chap-
ter 7).

• An approach to “search in the runtime” was designed in chapter 8. It was validated
using a controlled experiment on human subjects, showing a positive effect on program
maintenance efficiency during a simple search-focused task.

• A novel documentation approach was presented in chapter 9. It is based on concrete
examples of objects obtained by dynamic analysis.

• The definition of the term “source code augmentation” was provided in chapter 10. We
designed a taxonomy of visual augmentation of source code editors. The systematic lit-
erature review, resulting in a list of 103 relevant articles, was performed in collaboration
with Michaela Bačíková and Sergej Chodarev.

• An approach to augment source code lines with sample variable values was designed in
chapter 11. A list of important questions for future research was also mentioned.

We also provided multiple minor contributions in this dissertation. Some of these minor
research contributions are:

• a trend analysis of topics in program comprehension (section 2.4),
• a comparison between human-human and human-machine annotation overlap (sec-

tion 5.4)
• and a discussion about storage possibilities of runtime metadata directly in source code

files (chapter 6).

12.3 Future Work
Many of the topics discussed in this thesis suggest future research possibilities. Now we will
mention some of them.

The study about build systems describes the current state, which is certainly not optimal,
but it does not provide any solutions. However, motivated also by our study, Hassan et al.
[148] examined the details behind build failures, and Macho et al. designed an approach to
automatically repair dependency-related build issues [148].

Our study of GUI term occurrences in the code was limited to four desktop Java ap-
plications. To increase its external validity, we should examine more programs, written
in other languages and using different technologies. Since many desktop applications are
gradually becoming legacy, a similar study performed on web applications would be more
representative.

RuntimeSearch can be extended with more options resembling the traditional textual
search (e.g., “Whole words” or “Find previous”) to further strengthen the presented metaphor.

131

12. CONCLUSION

Among the ideas presented in the thesis, we consider RuntimeSearch to be the readiest for
a successful transfer to the industry. Then we could perform field studies with industrial
programmers on real projects.

One of the disadvantages of our documentation generator, DynamiDoc, is the inability
to produce meaningful sentences when the toString methods are not overridden. Automated
generation of string representations in such cases can be a fruitful future research idea. The
mentioned shortcoming is shared with the current design of RuntimeSamp. However, in this
case, we would like to use a more interactive solution. Although Chis et al. [45] introduced
moldable (domain-specific) objects inspectors, their construction is prevalently manual. A
completely automated generation of semi-graphical object representations, along with the
conduction of supporting empirical studies, is a research idea we would like to fully embrace
in the future.

132

Bibliography

[1] AGRAWAL, H., AND HORGAN, J. R. Dynamic program slicing. SIGPLAN Not. 25, 6 (June
1990), 246–256.

[2] ALAM, S., AND DUGERDIL, P. EvoSpaces visualization tool: Exploring software architecture
in 3D. In Reverse Engineering, 2007. WCRE 2007. 14th Working Conference on (Oct. 2007),
pp. 269–270.

[3] ALSALLAKH, B., BODESINSKY, P., GRUBER, A., AND MIKSCH, S. Visual tracing for the
Eclipse Java debugger. In Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering (Washington, DC, USA, 2012), CSMR ’12, IEEE Computer
Society, pp. 545–548.

[4] ANDAM, B., BURGER, A., BERGER, T., AND CHAUDRON, M. Florida: Feature LOcation
DAshboard for extracting and visualizing feature traces. In Proceedings of the Eleventh
International Workshop on Variability Modelling of Software-intensive Systems (2017), ACM,
pp. 100–107.

[5] ANWIKAR, V., NAIK, R., CONTRACTOR, A., AND MAKKAPATI, H. Domain-driven technique
for functionality identification in source code. ACM SIGSOFT Software Engineering Notes 37,
3 (May 2012), 1–8.

[6] ASENOV, D., AND MULLER, P. Envision: A fast and flexible visual code editor with fluid
interactions (overview). In 2014 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (July 2014), pp. 9–12.

[7] ASENOV, D., MÜLLER, P., AND VOGEL, L. The IDE as a scriptable information system. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineer-
ing (New York, NY, USA, 2016), ASE 2016, ACM, pp. 444–449.

[8] AZUMA, R., BAILLOT, Y., BEHRINGER, R., FEINER, S., JULIER, S., AND MACINTYRE, B.
Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21, 6 (Nov. 2001), 34–47.

[9] BACCHELLI, A., LANZA, M., AND D’AMBROS, M. Miler: A toolset for exploring email data.
In Proceedings of the 33rd International Conference on Software Engineering (New York, NY,
USA, 2011), ICSE ’11, ACM, pp. 1025–1027.

[10] BALTES, S., SCHMITZ, P., AND DIEHL, S. Linking sketches and diagrams to source code
artifacts. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (2014), vol. 16-21-November-2014, ACM, pp. 743–746.

[11] BANERJEE, A., GUO, H.-F., AND ROYCHOUDHURY, A. Debugging energy-efficiency related
field failures in mobile apps. In Proceedings - International Conference on Mobile Software
Engineering and Systems, MOBILESoft 2016 (2016), ACM, pp. 127–138.

[12] BARIK, T., SONG, Y., JOHNSON, B., AND MURPHY-HILL, E. From quick fixes to slow fixes:
Reimagining static analysis resolutions to enable design space exploration. In Proceedings -

133

BIBLIOGRAPHY

2016 IEEE International Conference on Software Maintenance and Evolution, ICSME 2016
(2016), IEEE, pp. 211–221.

[13] BARIK, T., WITSCHEY, J., JOHNSON, B., AND MURPHY-HILL, E. Compiler error no-
tifications revisited: An interaction-first approach for helping developers more effectively
comprehend and resolve error notifications. In 36th International Conference on Software
Engineering, ICSE Companion 2014 - Proceedings (2014), ACM, pp. 536–539.

[14] BATHIA, P., BEERELLI, B., AND LAVERDIÈRE, M.-A. Assisting programmers resolving
vulnerabilities in Java web applications. In Communications in Computer and Information
Science (2011), vol. 133 CCIS, pp. 268–279.

[15] BAČÍKOVÁ, M., PORUBÄN, J., AND LAKATOŠ, D. Defining domain language of graphical
user interfaces. In 2nd Symposium on Languages, Applications and Technologies (Dagstuhl,
Germany, 2013), J. P. Leal, R. Rocha, and A. Simões, Eds., vol. 29 of OpenAccess Series in
Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 187–202.

[16] BAVOTA, G., COLANGELO, L., DE LUCIA, A., FUSCO, S., OLIVETO, R., AND PANICHELLA,
A. TraceME: Traceability management in eclipse. In Software Maintenance (ICSM), 2012 28th
IEEE International Conference on (Sept. 2012), pp. 642–645.

[17] BECK, F., DIT, B., VELASCO-MADDEN, J., WEISKOPF, D., AND POSHYVANYK, D. Rethink-
ing user interfaces for feature location. In Proceedings of the 2015 IEEE 23rd International
Conference on Program Comprehension (Piscataway, NJ, USA, 2015), ICPC ’15, IEEE Press,
pp. 151–162.

[18] BECK, F., GULAN, S., BIEGEL, B., BALTES, S., AND WEISKOPF, D. RegViz: Visual
debugging of regular expressions. In Companion Proceedings of the 36th International Con-
ference on Software Engineering (New York, NY, USA, 2014), ICSE Companion 2014, ACM,
pp. 504–507.

[19] BECK, F., HOLLERICH, F., DIEHL, S., AND WEISKOPF, D. Visual monitoring of numeric
variables embedded in source code. In Software Visualization (VISSOFT), 2013 First IEEE
Working Conference on (Sept. 2013), pp. 1–4.

[20] BECK, F., MOSELER, O., DIEHL, S., AND REY, G. In situ understanding of performance
bottlenecks through visually augmented code. In Program Comprehension (ICPC), 2013 IEEE
21st International Conference on (May 2013), pp. 63–72.

[21] BELLER, M., GOUSIOS, G., AND ZAIDMAN, A. Oops, my tests broke the build: An analysis
of Travis CI builds with GitHub. PeerJ Preprints 4:e1984v1, 2016.

[22] BELMONTE, J., DUGERDIL, P., AND AGRAWAL, A. A three-layer model of source code
comprehension. In Proceedings of the 7th India Software Engineering Conference (New York,
NY, USA, 2014), ISEC ’14, ACM, pp. 10:1–10:10.

[23] BEYER, D., AND FARAROOY, A. DepDigger: A tool for detecting complex low-level depen-
dencies. In Program Comprehension (ICPC), 2010 IEEE 18th International Conference on
(June 2010), pp. 40–41.

[24] BIEGEL, B., BALTES, S., SCARPELLINI, I., AND DIEHL, S. CodeBasket: Making developers’
mental model visible and explorable. In Proceedings - 2nd International Workshop on Context
for Software Development, CSD 2015 (2015), IEEE, pp. 20–24.

[25] BIGGERSTAFF, T. J., MITBANDER, B. G., AND WEBSTER, D. The concept assignment
problem in program understanding. In Proceedings of the 15th International Conference on
Software Engineering (Los Alamitos, CA, USA, 1993), ICSE ’93, IEEE Computer Society
Press, pp. 482–498.

[26] BINKLEY, D., GOLD, N., HARMAN, M., ISLAM, S., KRINKE, J., AND YOO, S. ORBS:
Language-independent program slicing. In Proceedings of the 22Nd ACM SIGSOFT Interna-

134

Bibliography

tional Symposium on Foundations of Software Engineering (New York, NY, USA, 2014), FSE
2014, ACM, pp. 109–120.

[27] BLACKBURN, S. M., ET AL. The DaCapo benchmarks: Java benchmarking development and
analysis. In Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-oriented
Programming Systems, Languages, and Applications (New York, NY, USA, 2006), ACM,
pp. 169–190.

[28] BOHNET, J., AND DÖLLNER, J. Analyzing dynamic call graphs enhanced with program state
information for feature location and understanding. In Companion of the 30th International
Conference on Software Engineering (New York, NY, USA, 2008), ICSE Companion ’08, ACM,
pp. 915–916.

[29] BOLAND, M., AND CLIFTON, C. Introducing PyLighter: Dynamic code highlighter. SIGCSE
Bulletin 41, 1 (2009), 489–493.

[30] BOSHERNITSAN, M., GRAHAM, S., AND HEARST, M. Aligning development tools with the
way programmers think about code changes. In Conference on Human Factors in Computing
Systems - Proceedings (2007), pp. 567–576.

[31] BRADLEY, A. W., AND MURPHY, G. C. Supporting software history exploration. In Proceed-
ings of the 8th Working Conference on Mining Software Repositories (New York, NY, USA,
2011), MSR ’11, ACM, pp. 193–202.

[32] BRAGDON, A., REISS, S. P., ZELEZNIK, R., KARUMURI, S., CHEUNG, W., KAPLAN, J.,
COLEMAN, C., ADEPUTRA, F., AND LAVIOLA, JR., J. J. Code Bubbles: Rethinking the
user interface paradigm of integrated development environments. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1 (New York, NY,
USA, 2010), ICSE ’10, ACM, pp. 455–464.

[33] BRECKEL, A., AND TICHY, M. Embedding programming context into source code. In IEEE
International Conference on Program Comprehension (2016), vol. 2016-July, IEEE Computer
Society.

[34] BRERETON, P., KITCHENHAM, B. A., BUDGEN, D., TURNER, M., AND KHALIL, M. Lessons
from applying the systematic literature review process within the software engineering domain.
Journal of Systems and Software 80, 4 (2007), 571–583.

[35] BROOKS, R. Using a behavioral theory of program comprehension in software engineering.
In Proceedings of the 3rd International Conference on Software Engineering (Piscataway, NJ,
USA, 1978), ICSE ’78, IEEE Press, pp. 196–201.

[36] BUSE, R. P., AND WEIMER, W. R. Automatic documentation inference for exceptions. In
Proceedings of the 2008 International Symposium on Software Testing and Analysis (New York,
NY, USA, 2008), ISSTA ’08, ACM, pp. 273–282.

[37] BUSE, R. P., AND WEIMER, W. R. Synthesizing API usage examples. In 2012 34th Interna-
tional Conference on Software Engineering (ICSE) (June 2012), pp. 782–792.

[38] CARD, S. K., AND MACKINLAY, J. The structure of the information visualization design space.
In Information Visualization, 1997. Proceedings., IEEE Symposium on (Oct. 1997), pp. 92–99.

[39] CARVALHO, N. R., ALMEIDA, J. J., HENRIQUES, P. R., AND PEREIRA, M. J. V. Conclave:
Ontology-driven measurement of semantic relatedness between source code elements and
problem domain concepts. In Computational Science and Its Applications – ICCSA 2014.
Springer International Publishing, 2014, pp. 116–131.

[40] CARVER, J., JACCHERI, L., MORASCA, S., AND SHULL, F. A checklist for integrating
student empirical studies with research and teaching goals. Empirical Software Engineering 15,
1 (2010), 35–59.

135

BIBLIOGRAPHY

[41] CAZZOLA, W., AND VACCHI, E. @Java: Bringing a richer annotation model to Java. Computer
Languages, Systems & Structures 40, 1 (2014), 2–18. Special issue on the Programming
Languages track at the 28th ACM Symposium on Applied Computing.

[42] CHEN, K., AND RAJLICH, V. Case study of feature location using dependence graph. In
Proceedings of the 8th International Workshop on Program Comprehension (Washington, DC,
USA, 2000), IWPC ’00, IEEE Computer Society, pp. 241–247.

[43] CHIBA, S., HORIE, M., KANAZAWA, K., TAKEYAMA, F., AND TERAMOTO, Y. Do we really
need to extend syntax for advanced modularity? In AOSD’12 - Proceedings of the 11th Annual
International Conference on Aspect Oriented Software Development (2012), pp. 95–106.

[44] CHIŞ, A., GÎRBA, T., KUBELKA, J., NIERSTRASZ, O., REICHHART, S., AND SYREL, A.
Moldable, context-aware searching with Spotter. In Proceedings of the 2016 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming and Software
(New York, NY, USA, 2016), Onward! 2016, ACM, pp. 128–144.

[45] CHIŞ, A., NIERSTRASZ, O., SYREL, A., AND GÎRBA, T. The moldable inspector. In 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
and Software (New York, NY, USA, 2015), Onward! 2015, ACM, pp. 44–60.

[46] CITO, J., LEITNER, P., GALL, H., DADASHI, A., KELLER, A., AND ROTH, A. Runtime
metric meets developer: Building better cloud applications using feedback. In Onward! 2015 -
Proceedings of the 2015 ACM International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, Part of SPLASH 2015 (2015), ACM, pp. 14–27.

[47] CORNELISSEN, B., ZAIDMAN, A., VAN DEURSEN, A., MOONEN, L., AND KOSCHKE, R. A
systematic survey of program comprehension through dynamic analysis. Software Engineering,
IEEE Transactions on 35, 5 (Sept. 2009), 684–702.

[48] COSSETTE, B., AND WALKER, R. DSketch: Lightweight, adaptable dependency analysis. In
Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(2010), pp. 297–306.

[49] COTTRELL, R., WALKER, R., AND DENZINGER, J. Semi-automating small-scale source code
reuse via structural correspondence. In Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (2008), pp. 214–225.

[50] COWLISHAW, M. F. Lexx—a programmable structured editor. IBM J. Res. Dev. 31, 1 (Jan.
1987), 73–80.

[51] CROSS II, J., HENDRIX, T., AND BAROWSKI, L. Combining dynamic program viewing and
testing in early computing courses. In Proceedings - International Computer Software and
Applications Conference (2011), pp. 184–192.

[52] DALLMEIER, V., LINDIG, C., WASYLKOWSKI, A., AND ZELLER, A. Mining object behavior
with ADABU. In Proceedings of the 2006 International Workshop on Dynamic Systems Analysis
(New York, NY, USA, 2006), WODA ’06, ACM, pp. 17–24.

[53] DAMEVSKI, K., SHEPHERD, D., AND POLLOCK, L. A field study of how developers locate
features in source code. Empirical Software Engineering 21, 2 (2016), 724–747.

[54] DANG, H., NGUYEN, V., DO, K., AND TRAN, T. EduCo: An integrated social environment
for teaching and learning software engineering courses. In Proceedings of the 16th International
Conference on Information Integration and Web-based Applications & Services (2014), vol. 04-
06-December-2014, ACM, pp. 17–26.

[55] DE ROOVER, C., NOGUERA, C., KELLENS, A., AND JONCKERS, V. The SOUL tool suite
for querying programs in symbiosis with Eclipse. In Proceedings of the 9th International
Conference on the Principles and Practice of Programming in Java, PPPJ 2011 (2011), pp. 71–
80.

136

Bibliography

[56] DEKEL, U., AND HERBSLEB, J. Improving API documentation usability with knowledge
pushing. In Software Engineering, 2009. ICSE 2009. IEEE 31st International Conference on
(May 2009), pp. 320–330.

[57] DELINE, R., BRAGDON, A., ROWAN, K., JACOBSEN, J., AND REISS, S. P. Debugger canvas:
Industrial experience with the code bubbles paradigm. In Proceedings of the 34th International
Conference on Software Engineering (Piscataway, NJ, USA, 2012), ICSE ’12, IEEE Press,
pp. 1064–1073.

[58] DESMOND, M., STOREY, M.-A., AND EXTON, C. Fluid source code views. In IEEE
International Conference on Program Comprehension (2006), vol. 2006, pp. 260–263.

[59] DIT, B., REVELLE, M., GETHERS, M., AND POSHYVANYK, D. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process 25, 1 (2013), 53–95.

[60] DO, L., ALI, K., LIVSHITS, B., BODDEN, E., SMITH, J., AND MURPHY-HILL, E. Chee-
tah: Just-in-time taint analysis for Android apps. In Proceedings - 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion, ICSE-C 2017 (2017), IEEE,
pp. 39–42.

[61] DUALA-EKOKO, E., AND ROBILLARD, M. Tracking code clones in evolving software. In
Proceedings - International Conference on Software Engineering (2007), pp. 158–167.

[62] DUCASSE, M. Coca: an automated debugger for C. In Proceedings of the 1999 International
Conference on Software Engineering (May 1999), pp. 504–513.

[63] EDWARDS, J. Example centric programming. SIGPLAN Not. 39, 12 (Dec. 2004), 84–91.

[64] EISENBARTH, T., KOSCHKE, R., AND SIMON, D. Locating features in source code. IEEE
Transactions on Software Engineering 29, 3 (March 2003), 210–224.

[65] EYL, M., REICHMANN, C., AND MÜLLER-GLASER, K. Traceability in a fine grained software
configuration management system. In Lecture Notes in Business Information Processing (2017),
vol. 269, Springer Verlag, pp. 15–29.

[66] FAN, H., SUN, C., AND SHEN, H. ATCoPE: Any-time collaborative programming environment
for seamless integration of real-time and non-real-time teamwork in software development. In
GROUP’12 - Proceedings of the ACM 2012 International Conference on Support Group Work
(2012), pp. 107–116.

[67] FAVRE, J.-M., LÄMMEL, R., LEINBERGER, M., SCHMORLEIZ, T., AND VARANOVICH, A.
Linking documentation and source code in a software chrestomathy. In Reverse Engineering
(WCRE), 2012 19th Working Conference on (Oct. 2012), pp. 335–344.

[68] FEIGENSPAN, J., KASTNER, C., LIEBIG, J., APEL, S., AND HANENBERG, S. Measuring
programming experience. In Program Comprehension (ICPC), 2012 IEEE 20th International
Conference on (June 2012), pp. 73–82.

[69] FELDMAN, S. I. Make – a program for maintaining computer programs. Software: Practice
and Experience 9, 4 (1979), 255–265.

[70] FERRARI, A., GARBERVETSKY, D., BRABERMAN, V., LISTINGART, P., AND YOVINE,
S. JScoper: Eclipse support for research on scoping and instrumentation for real time Java
applications. In Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology eXchange,
eclipse’05 (2005), pp. 50–54.

[71] FINDLER, R., CLEMENTS, J., FLANAGAN, C., FLATT, M., KRISHNAMURTHI, S., STECKLER,
P., AND FELLEISEN, M. DrScheme: A programming environment for scheme. Journal of
Functional Programming 12, 2 (2002), 159–182.

[72] FITTKAU, F., WALLER, J., WULF, C., AND HASSELBRING, W. Live trace visualization for
comprehending large software landscapes: The ExplorViz approach. In Software Visualization
(VISSOFT), 2013 First IEEE Working Conference on (Sept. 2013), pp. 1–4.

137

BIBLIOGRAPHY

[73] FLURI, B., ZUBERBÜHLER, J., AND GALL, H. Recommending method invocation context
changes. In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (2008), pp. 1–5.

[74] FRASER, G., AND ARCURI, A. A large-scale evaluation of automated unit test generation
using EvoSuite. ACM Trans. Softw. Eng. Methodol. 24, 2 (Dec. 2014), 8:1–8:42.

[75] GANEA, G., VEREBI, I., AND MARINESCU, R. Continuous quality assessment with inCode.
Science of Computer Programming 134 (2017), 19–36.

[76] GE, X., DUBOSE, Q., AND MURPHY-HILL, E. Reconciling manual and automatic refactoring.
In Proceedings - International Conference on Software Engineering (2012), pp. 211–221.

[77] GE, X., AND MURPHY-HILL, E. Manual refactoring changes with automated refactoring
validation. In Proceedings - International Conference on Software Engineering (2014), no. 1,
IEEE Computer Society, pp. 1095–1105.

[78] GLASS, R. L. Frequently forgotten fundamental facts about software engineering. Software,
IEEE 18, 3 (May 2001), 112, 110–111.

[79] GOLDMAN, M., LITTLE, G., AND MILLER, R. Real-time collaborative coding in a web IDE.
In UIST’11 - Proceedings of the 24th Annual ACM Symposium on User Interface Software and
Technology (2011), pp. 155–164.

[80] GONCHARENKO, B., AND ZAYTSEV, V. Language design and implementation for the domain
of coding conventions. In SLE 2016 - Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering, co-located with SPLASH 2016 (2016), ACM,
pp. 90–104.

[81] GRAČANIN, D., MATKOVIĆ, K., AND ELTOWEISSY, M. Software visualization. Innovations
in Systems and Software Engineering 1, 2 (Sept. 2005), 221–230.

[82] GREENFIELD, J., SHORT, K., COOK, S., AND KENT, S. Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools. John Wiley & Sons, 2004.

[83] GRISWOLD, W., YUAN, J., AND KATO, Y. Exploiting the map metaphor in a tool for
software evolution. In Proceedings - International Conference on Software Engineering (2001),
pp. 265–274.

[84] GUZZI, A., AND BEGEL, A. Facilitating communication between engineers with CARES. In
Proceedings - International Conference on Software Engineering (2012), pp. 1367–1370.

[85] GUZZI, A., HATTORI, L., LANZA, M., PINZGER, M., AND VAN DEURSEN, A. Collective
code bookmarks for program comprehension. In Program Comprehension (ICPC), 2011 IEEE
19th International Conference on (June 2011), pp. 101–110.

[86] HARMON, T., AND KLEFSTAD, R. Interactive back-annotation of worst-case execution time
analysis for Java microprocessors. In Proceedings - 13th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA 2007 (2007), pp. 209–
216.

[87] HARTMANN, B., DHILLON, M., AND CHAN, M. HyperSource: Bridging the gap between
source and code-related web sites. In Conference on Human Factors in Computing Systems -
Proceedings (2011), pp. 2207–2210.

[88] HARWARD, M., IRWIN, W., AND CHURCHER, N. In situ software visualisation. In Software
Engineering Conference (ASWEC), 2010 21st Australian (Apr. 2010), pp. 171–180.

[89] HATTORI, L., AND LANZA, M. Syde: A tool for collaborative software development. In
Proceedings - International Conference on Software Engineering (2010), vol. 2, pp. 235–238.

[90] HAYASHI, S., HOSHINO, D., MATSUDA, J., SAEKI, M., OMORI, T., AND MARUYAMA, K.
Historef: A tool for edit history refactoring. In 2015 IEEE 22nd International Conference on

138

Bibliography

Software Analysis, Evolution, and Reengineering, SANER 2015 - Proceedings (2015), IEEE,
pp. 469–473.

[91] HAYASHI, S., KAZATO, H., KOBAYASHI, T., OSHIMA, T., NATSUKAWA, K., HOSHINO, T.,
AND SAEKI, M. Guiding identification of missing scenarios for dynamic feature location. In
2016 23rd Asia-Pacific Software Engineering Conference (APSEC) (Dec. 2016), pp. 393–396.

[92] HOCHSTEIN, L., AND JIAO, Y. The cost of the build tax in scientific software. In Empirical
Software Engineering and Measurement (ESEM), 2011 International Symposium on (Sept.
2011), pp. 384–387.

[93] HOFFMAN, D., AND STROOPER, P. Prose + test cases = specifications. In Proceedings of
the 34th International Conference on Technology of Object-Oriented Languages and Systems
(Washington, DC, USA, 2000), TOOLS ’00, IEEE Computer Society, pp. 239–250.

[94] HOLMES, R., AND BEGEL, A. Deep Intellisense: A tool for rehydrating evaporated information.
In Proceedings of the 2008 International Working Conference on Mining Software Repositories
(New York, NY, USA, 2008), MSR ’08, ACM, pp. 23–26.

[95] HOLMES, R., AND NOTKIN, D. Enhancing static source code search with dynamic data. In
Proceedings of 2010 ICSE Workshop on Search-driven Development: Users, Infrastructure,
Tools and Evaluation (New York, NY, USA, 2010), SUITE ’10, ACM, pp. 13–16.

[96] HOLMES, R., AND WALKER, R. Task-specific source code dependency investigation. In
VISSOFT 2007 - Proceedings of the 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis (2007), pp. 100–107.

[97] HOU, D., JABLONSKI, P., AND JACOB, F. CnP: Towards an environment for the proactive
management of copy-and-paste programming. In Program Comprehension, 2009. ICPC ’09.
IEEE 17th International Conference on (May 2009), pp. 238–242.

[98] HUNDHAUSEN, C., AND BROWN, J. What You See Is What You Code: A "live" algorithm
development and visualization environment for novice learners. Journal of Visual Languages
and Computing 18, 1 (2007), 22–47.

[99] HUPFER, S., CHENG, L.-T., ROSS, S., AND PATTERSON, J. Introducing collaboration into an
application development environment. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, CSCW (2004), pp. 21–24.

[100] JABLONSKI, P., AND HOU, D. Aiding software maintenance with copy-and-paste clone-
awareness. In IEEE International Conference on Program Comprehension (2010), pp. 170–179.

[101] JACOB, F., HOU, D., AND JABLONSKI, P. Actively comparing clones inside the code editor.
In Proceedings - International Conference on Software Engineering (2010), pp. 9–16.

[102] JBARA, A., AND FEITELSON, D. G. On the effect of code regularity on comprehension. In
Proceedings of the 22nd International Conference on Program Comprehension (New York, NY,
USA, 2014), ICPC 2014, ACM, pp. 189–200.

[103] JEDLITSCHKA, A., AND PFAHL, D. Reporting guidelines for controlled experiments in
software engineering. In Empirical Software Engineering, 2005. 2005 International Symposium
on (Nov. 2005), pp. 95–104.

[104] JI, W., BERGER, T., ANTKIEWICZ, M., AND CZARNECKI, K. Maintaining feature traceability
with embedded annotations. In Proceedings of the 19th International Conference on Software
Product Line (New York, NY, USA, 2015), SPLC ’15, ACM, pp. 61–70.

[105] JOY, M., BECKER, M., MUELLER, W., AND MATHEWS, E. Automated source code annotation
for timing analysis of embedded software. In Advanced Computing and Communications
(ADCOM), 2012 18th Annual International Conference on (Dec. 2012), pp. 12–18.

[106] KALLIAMVAKOU, E., GOUSIOS, G., BLINCOE, K., SINGER, L., GERMAN, D. M., AND

DAMIAN, D. The promises and perils of mining GitHub. In Proceedings of the 11th Working

139

BIBLIOGRAPHY

Conference on Mining Software Repositories (New York, NY, USA, 2014), MSR 2014, ACM,
pp. 92–101.

[107] KAMPENES, V. B., DYBÅ, T., HANNAY, J. E., AND SJØBERG, D. I. K. A systematic review
of quasi-experiments in software engineering. Information and Software Technology 51, 1
(2009), 71–82. Special Section - Most Cited Articles in 2002 and Regular Research Papers.

[108] KANG, H., AND GUO, P. Omnicode: A novice-oriented live programming environment with
always-on run-time value visualizations. In UIST 2017 - Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology (2017), ACM, pp. 737–745.

[109] KARRER, T., KRÄMER, J.-P., DIEHL, J., HARTMANN, B., AND BORCHERS, J. Stacksplorer:
Call graph navigation helps increasing code maintenance efficiency. In Proceedings of the 24th
Annual ACM Symposium on User Interface Software and Technology (New York, NY, USA,
2011), UIST ’11, ACM, pp. 217–224.

[110] KÄSTNER, C., APEL, S., AND KUHLEMANN, M. Granularity in software product lines. In
Proceedings - International Conference on Software Engineering (2008), pp. 311–320.

[111] KAWRYKOW, D., AND ROBILLARD, M. Improving API usage through automatic detection
of redundant code. In ASE2009 - 24th IEEE/ACM International Conference on Automated
Software Engineering (2009), pp. 111–122.

[112] KERZAZI, N., KHOMH, F., AND ADAMS, B. Why do automated builds break? An empirical
study. In Software Maintenance and Evolution (ICSME), 2014 IEEE International Conference
on (Sept. 2014), pp. 41–50.

[113] KHOO, Y. P., FOSTER, J. S., AND HICKS, M. Expositor: Scriptable time-travel debugging with
first-class traces. In Proceedings of the 2013 International Conference on Software Engineering
(Piscataway, NJ, USA, 2013), ICSE ’13, IEEE Press, pp. 352–361.

[114] KIM, J., LEE, S., HWANG, S.-W., AND KIM, S. Adding examples into Java documents.
In Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering (Washington, DC, USA, 2009), ASE ’09, IEEE Computer Society, pp. 540–544.

[115] KIRINUKI, H., HIGO, Y., HOTTA, K., AND KUSUMOTO, S. Hey! Are you committing tangled
changes? In Proceedings of the 22nd International Conference on Program Comprehension
(New York, NY, USA, 2014), ICPC 2014, ACM, pp. 262–265.

[116] KISTNER, F., BETH KERY, M., PUSKAS, M., MOORE, S., AND MYERS, B. Moonstone:
Support for understanding and writing exception handling code. In Proceedings of IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC (2017), vol. 2017-
October, IEEE Computer Society, pp. 63–71.

[117] KITCHENHAM, B., AND CHARTERS, S. Guidelines for performing systematic literature
reviews in software engineering. Technical Report EBSE-2007-01, Keele University and
Durham University Joint Report, July 2007.

[118] KLOCK, S., GETHERS, M., DIT, B., AND POSHYVANYK, D. Traceclipse: An Eclipse plug-
in for traceability link recovery and management. In Proceedings of the 6th International
Workshop on Traceability in Emerging Forms of Software Engineering (New York, NY, USA,
2011), TEFSE ’11, ACM, pp. 24–30.

[119] KO, A., LATOZA, T., AND BURNETT, M. A practical guide to controlled experiments of
software engineering tools with human participants. Empirical Software Engineering 20, 1
(2015), 110–141.

[120] KO, A. J., AUNG, H. H., AND MYERS, B. A. Eliciting design requirements for maintenance-
oriented IDEs: A detailed study of corrective and perfective maintenance tasks. In Proceedings
of the 27th International Conference on Software Engineering (New York, NY, USA, 2005),
ICSE ’05, ACM, pp. 126–135.

140

Bibliography

[121] KO, A. J., AND MYERS, B. A. Debugging reinvented: Asking and answering why and why
not questions about program behavior. In Proceedings of the 30th International Conference on
Software Engineering (New York, NY, USA, 2008), ICSE ’08, ACM, pp. 301–310.

[122] KOLLÁR, J., CHODAREV, S., PIETRIKOVÁ, E., AND WASSERMANN, L’. Identification of
patterns through Haskell programs analysis. In Computer Science and Information Systems
(FedCSIS), 2011 Federated Conference on (Sept. 2011), pp. 891–894.

[123] KOSAR, T., MERNIK, M., AND CARVER, J. C. Program comprehension of domain-specific
and general-purpose languages: comparison using a family of experiments. Empirical Software
Engineering 17, 3 (2012), 276–304.

[124] KOSAR, T., OLIVEIRA, N., MERNIK, M., PEREIRA, M. J. V., ČREPINŠEK, M., DA CRUZ,
D., AND HENRIQUES, P. R. Comparing general-purpose and domain-specific languages: An
empirical study. Computer Science and Information Systems 7, 2 (Apr. 2010), 247–264.

[125] KRAMER, D. API documentation from source code comments: A case study of Javadoc. In
Proceedings of the 17th Annual International Conference on Computer Documentation (New
York, NY, USA, 1999), SIGDOC ’99, ACM, pp. 147–153.

[126] KRÄMER, J.-P., KURZ, J., KARRER, T., AND BORCHERS, J. How live coding affects
developers’ coding behavior. In 2014 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC) (July 2014), pp. 5–8.

[127] LAKATOŠ, D., PORUBÄN, J., AND BAČÍKOVÁ, M. Declarative specification of references in
DSLs. In Computer Science and Information Systems (FedCSIS), 2013 Federated Conference
on (Sept. 2013), pp. 1527–1534.

[128] LANZA, M., DUCASSE, S., GALL, H., AND PINZGER, M. CodeCrawler - an information
visualization tool for program comprehension. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on (May 2005), pp. 672–673.

[129] LATOZA, T. D., AND MYERS, B. A. Developers ask reachability questions. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1 (New York,
NY, USA, 2010), ICSE ’10, ACM, pp. 185–194.

[130] LATOZA, T. D., VENOLIA, G., AND DELINE, R. Maintaining mental models: A study
of developer work habits. In Proceedings of the 28th International Conference on Software
Engineering (New York, NY, USA, 2006), ICSE ’06, ACM, pp. 492–501.

[131] LAUTAMÄKI, J., NIEMINEN, A., KOSKINEN, J., AHO, T., MIKKONEN, T., AND ENGLUND,
M. CoRED: Browser-based collaborative real-time editor for Java web applications. In
Proceedings of the ACM Conference on Computer Supported Cooperative Work, CSCW (2012),
pp. 1307–1316.

[132] LAYMAN, L., DIEP, M., NAGAPPAN, M., SINGER, J., DELINE, R., AND VENOLIA, G.
Debugging revisited: Toward understanding the debugging needs of contemporary software
developers. In 2013 ACM / IEEE International Symposium on Empirical Software Engineering
and Measurement (Los Alamitos, CA, USA, 2013), IEEE Computer Society, pp. 383–392.

[133] LEE, H., ANTKIEWICZ, M., AND CZARNECKI, K. Towards a generic infrastructure for
framework-specific integrated development environment extensions. In Domain-Specific Pro-
gram Development 2008 (Nashville, United States, 2008).

[134] LEE, S., CHEN, Y., KLUGMAN, N., GOURAVAJHALA, S., CHEN, A., AND LASECKI, W.
Exploring coordination models for ad hoc programming teams. In Conference on Human
Factors in Computing Systems - Proceedings (2017), vol. Part F127655, ACM, pp. 2738–2745.

[135] LEFEBVRE, G., CULLY, B., HEAD, C., SPEAR, M., HUTCHINSON, N., FEELEY, M., AND

WARFIELD, A. Execution mining. In Proceedings of the 8th ACM SIGPLAN/SIGOPS Con-
ference on Virtual Execution Environments (New York, NY, USA, 2012), VEE ’12, ACM,
pp. 145–158.

141

BIBLIOGRAPHY

[136] LEITNER, P., CITO, J., AND STÖCKLI, E. Modelling and managing deployment costs
of microservice-based cloud applications. In Proceedings - 9th IEEE/ACM International
Conference on Utility and Cloud Computing, UCC 2016 (2016), ACM, pp. 165–174.

[137] LHOTÁK, J., LHOTÁK, O., AND HENDREN, L. Integrating the Soot compiler infrastructure
into an IDE. In Lecture Notes in Computer Science (2004), vol. 2985, pp. 281–297.

[138] LI, D., HAO, S., HALFOND, W., AND GOVINDAN, R. Calculating source line level energy
information for Android applications. In 2013 International Symposium on Software Testing
and Analysis, ISSTA 2013 - Proceedings (2013), pp. 78–89.

[139] LICHTSCHLAG, L., SPYCHALSKI, L., AND BOCHERS, J. CodeGraffiti: Using hand-drawn
sketches connected to code bases in navigation tasks. In Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC (2014), IEEE Computer Society,
pp. 65–68.

[140] LIEBER, T., BRANDT, J. R., AND MILLER, R. C. Addressing misconceptions about code with
always-on programming visualizations. In Proceedings of the 32nd Annual ACM Conference
on Human Factors in Computing Systems (New York, NY, USA, 2014), CHI ’14, ACM,
pp. 2481–2490.

[141] LIEBIG, J., KÄSTNER, C., AND APEL, S. Analyzing the discipline of preprocessor annotations
in 30 million lines of C code. In Proceedings of the Tenth International Conference on Aspect-
oriented Software Development (New York, NY, USA, 2011), AOSD ’11, ACM, pp. 191–202.

[142] LIU, D., MARCUS, A., POSHYVANYK, D., AND RAJLICH, V. Feature location via information
retrieval based filtering of a single scenario execution trace. In Proceedings of the Twenty-second
IEEE/ACM International Conference on Automated Software Engineering (New York, NY,
USA, 2007), ASE ’07, ACM, pp. 234–243.

[143] LIU, D., AND XU, S. MuTT: A multi-threaded tracer for Java programs. In Computer and
Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS International Conference on (June
2009), pp. 949–954.

[144] LO, D., AND MAOZ, S. Scenario-based and value-based specification mining: Better together.
In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering
(New York, NY, USA, 2010), ASE ’10, ACM, pp. 387–396.

[145] LONG, F., WANG, X., AND CAI, Y. API hyperlinking via structural overlap. In Proceedings
of the the 7th Joint Meeting of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on The Foundations of Software Engineering (New York, NY, USA,
2009), ESEC/FSE ’09, ACM, pp. 203–212.

[146] LOPEZ, N., AND VAN DER HOEK, A. The Code Orb - supporting contextualized coding
via at-a-glance views (NIER track). In Proceedings - International Conference on Software
Engineering (2011), pp. 824–827.

[147] MAALEJ, W., TIARKS, R., ROEHM, T., AND KOSCHKE, R. On the comprehension of program
comprehension. ACM Trans. Softw. Eng. Methodol. 23, 4 (Sept. 2014), 31:1–31:37.

[148] MACHO, C., MCINTOSH, S., AND PINZGER, M. Automatically repairing dependency-related
build breakage. In 2018 IEEE 25th International Conference on Software Analysis, Evolution
and Reengineering (SANER) (Mar. 2018), pp. 106–117.

[149] MALETIC, J. I., MARCUS, A., AND COLLARD, M. L. A task oriented view of software visual-
ization. In Proceedings First International Workshop on Visualizing Software for Understanding
and Analysis (2002), pp. 32–40.

[150] MARCEAU, G., COOPER, G. H., KRISHNAMURTHI, S., AND REISS, S. P. A dataflow language
for scriptable debugging. In Proceedings. 19th International Conference on Automated Software
Engineering, 2004. (Sept 2004), pp. 218–227.

142

Bibliography

[151] MARCEAU, G., FISLER, K., AND KRISHNAMURTHI, S. Mind your language: On novices’
interactions with error messages. In Proceedings of the 10th SIGPLAN Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (New York, NY, USA,
2011), Onward! 2011, ACM, pp. 3–18.

[152] MARCUS, A., SERGEYEV, A., RAJLICH, V., AND MALETIC, J. I. An information retrieval
approach to concept location in source code. In Reverse Engineering, 2004. Proceedings. 11th
Working Conference on (Nov. 2004), pp. 214–223.

[153] MATSUMURA, T., ISHIO, T., KASHIMA, Y., AND INOUE, K. Repeatedly-executed-method
viewer for efficient visualization of execution paths and states in Java. In Proceedings of the
22nd International Conference on Program Comprehension (New York, NY, USA, 2014), ICPC
2014, ACM, pp. 253–257.

[154] MCBURNEY, P. W., AND MCMILLAN, C. Automatic documentation generation via source
code summarization of method context. In Proceedings of the 22Nd International Conference
on Program Comprehension (New York, NY, USA, 2014), ICPC 2014, ACM, pp. 279–290.

[155] MCDIRMID, S. Usable live programming. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software (New
York, NY, USA, 2013), Onward! 2013, ACM, pp. 53–62.

[156] MCINTOSH, S., ADAMS, B., AND HASSAN, A. The evolution of ANT build systems. In
Mining Software Repositories (MSR), 2010 7th IEEE Working Conference on (May 2010),
pp. 42–51.

[157] MCINTOSH, S., NAGAPPAN, M., ADAMS, B., MOCKUS, A., AND HASSAN, A. E. A
large-scale empirical study of the relationship between build technology and build maintenance.
Empirical Software Engineering 20, 6 (2015), 1587–1633.

[158] MEINICKE, J., THÜM, T., SCHRÖTER, R., KRIETER, S., BENDUHN, F., SAAKE, G., AND

LEICH, T. FeatureIDE: Taming the preprocessor wilderness. In Proceedings - International
Conference on Software Engineering (2016), IEEE Computer Society, pp. 629–632.

[159] MELLIS, D. A. Tangible code. Thesis report, Interaction Design Insitute Ivrea, May 2006.

[160] MEMON, A., BANERJEE, I., AND NAGARAJAN, A. GUI ripping: reverse engineering of
graphical user interfaces for testing. In Reverse Engineering, 2003. WCRE 2003. Proceedings.
10th Working Conference on (Nov. 2003), pp. 260–269.

[161] MESBAH, A., VAN DEURSEN, A., AND LENSELINK, S. Crawling AJAX-based Web appli-
cations through dynamic analysis of user interface state changes. ACM Trans. Web 6, 1 (Mar.
2012), 3:1–3:30.

[162] MICHAIL, A. Browsing and searching source code of applications written using a GUI
framework. In Proceedings of the 24th International Conference on Software Engineering (New
York, NY, USA, 2002), ICSE ’02, ACM, pp. 327–337.

[163] MICHEL, J.-B., SHEN, Y. K., AIDEN, A. P., VERES, A., GRAY, M. K., TEAM, T. G. B.,
PICKETT, J. P., HOIBERG, D., CLANCY, D., NORVIG, P., ORWANT, J., PINKER, S., NOWAK,
M. A., AND AIDEN, E. L. Quantitative analysis of culture using millions of digitized books.
Science 331, 6014 (2011), 176–182.

[164] MONTANDON, J. A. E., BORGES, H., FELIX, D., AND VALENTE, M. T. Documenting APIs
with examples: Lessons learned with the APIMiner platform. In 2013 20th Working Conference
on Reverse Engineering (WCRE) (Oct 2013), pp. 401–408.

[165] MOODY, D. The “physics” of notations: Toward a scientific basis for constructing visual
notations in software engineering. IEEE Trans. Softw. Eng. 35, 6 (Nov. 2009), 756–779.

[166] MORENO, L., APONTE, J., SRIDHARA, G., MARCUS, A., POLLOCK, L., AND VIJAY-
SHANKER, K. Automatic generation of natural language summaries for Java classes. In 2013
21st International Conference on Program Comprehension (ICPC) (May 2013), pp. 23–32.

143

BIBLIOGRAPHY

[167] MÜLLER, C., REINA, G., AND ERTL, T. In-situ visualisation of fractional code ownership over
time. In Proceedings of the 8th International Symposium on Visual Information Communication
and Interaction (2015), ACM, pp. 13–20.

[168] MÜLLER, H. A., AND KIENLE, H. M. A small primer on software reverse engineering. Tech.
rep., University of Victoria, 2009.

[169] MUROLO, A., STUTZ, F., HUSMANN, M., AND NORRIE, M. Improved developer support for
the detection of cross-browser incompatibilities. In Lecture Notes in Computer Science (2017),
vol. 10360 LNCS, Springer Verlag, pp. 264–281.

[170] MURPHY-HILL, E., AND BLACK, A. Breaking the barriers to successful refactoring: Obser-
vations and tools for extract method. In Proceedings - International Conference on Software
Engineering (2008), pp. 421–430.

[171] MURPHY-HILL, E., AND BLACK, A. An interactive ambient visualization for code smells.
In Proceedings of the ACM Conference on Computer and Communications Security (2010),
pp. 5–14.

[172] MYERS, D., AND STOREY, M.-A. Using dynamic analysis to create trace-focused user
interfaces for IDEs. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering (New York, NY, USA, 2010), FSE ’10, ACM, pp. 367–
368.

[173] MYERS, D., STOREY, M.-A., AND SALOIS, M. Utilizing debug information to compact loops
in large program traces. In Proceedings of the 2010 14th European Conference on Software
Maintenance and Reengineering (Washington, DC, USA, 2010), CSMR ’10, IEEE Computer
Society, pp. 41–50.

[174] NAZAR, N., HU, Y., AND JIANG, H. Summarizing software artifacts: A literature review.
Journal of Computer Science and Technology 31, 5 (2016), 883–909.

[175] NEITSCH, A., WONG, K., AND GODFREY, M. Build system issues in multilanguage software.
In Software Maintenance (ICSM), 2012 28th IEEE International Conference on (Sept. 2012),
pp. 140–149.

[176] NETO, A. A., AND CONTE, T. Threats to validity and their control actions – results of a
systematic literature review. Technical Report TR-USES-2014-0002, Universidade Federal do
Amazonas, Mar. 2014.

[177] NGUYEN, B. N., ROBBINS, B., BANERJEE, I., AND MEMON, A. GUITAR: an innovative tool
for automated testing of GUI-driven software. Automated Software Engineering 21, 1 (2013),
65–105.

[178] NGUYEN, H. V., KÄSTNER, C., AND NGUYEN, T. N. Cross-language program slicing for
dynamic web applications. In Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering (New York, NY, USA, 2015), ESEC/FSE 2015, ACM, pp. 369–380.

[179] NISTOR, E., AND VAN DER HOEK, A. Explicit concern-driven development with ArchEvol.
In ASE2009 - 24th IEEE/ACM International Conference on Automated Software Engineering
(2009), pp. 185–196.

[180] NIU, N., MAHMOUD, A., AND YANG, X. Faceted navigation for software exploration. In
Program Comprehension (ICPC), 2011 IEEE 19th International Conference on (June 2011),
pp. 193–196.

[181] NOSÁL’, M. Leveraging Program Comprehension with Concern-oriented Projections. PhD
thesis, Technical University of Košice, Apr. 2015.

[182] NUNEZ, W., MARIN, V., AND RIVERO, C. ARCC: Assistant for repetitive code comprehension.
In Proceedings of the ACM SIGSOFT Symposium on the Foundations of Software Engineering
(2017), vol. Part F130154, ACM, pp. 999–1003.

144

Bibliography

[183] OHMANN, P., AND LIBLIT, B. CSIclipse: Presenting crash analysis data to developers. In ETX
2015 - Proceedings of the Eclipse Technology eXchange (2015), ACM, pp. 7–12.

[184] OLSZAK, A., AND NØRREGAARD JØRGENSEN, B. Remodularizing Java programs for
improved locality of feature implementations in source code. Science of Computer Programming
77, 3 (2012), 131–151.

[185] OU, J., VECHEV, M., AND HILLIGES, O. An interactive system for data structure development.
In Conference on Human Factors in Computing Systems - Proceedings (2015), vol. 2015-April,
ACM, pp. 3053–3062.

[186] PANCHENKO, O., KARSTENS, J., PLATTNER, H., AND ZEIER, A. Precise and scalable
querying of syntactical source code patterns using sample code snippets and a database. In
Program Comprehension (ICPC), 2011 IEEE 19th International Conference on (June 2011),
pp. 41–50.

[187] PANICHELLA, S., PANICHELLA, A., BELLER, M., ZAIDMAN, A., AND GALL, H. C. The
impact of test case summaries on bug fixing performance: An empirical investigation. In
Proceedings of the 38th International Conference on Software Engineering (New York, NY,
USA, 2016), ICSE ’16, ACM, pp. 547–558.

[188] PENNINGTON, N. Stimulus structures and mental representations in expert comprehension of
computer programs. Cognitive Psychology 19, 3 (1987), 295–341.

[189] PERSCHEID, M., STEINERT, B., HIRSCHFELD, R., GELLER, F., AND HAUPT, M. Immediacy
through interactivity: Online analysis of run-time behavior. In Proceedings of the 2010 17th
Working Conference on Reverse Engineering (Washington, DC, USA, 2010), WCRE ’10, IEEE
Computer Society, pp. 77–86.

[190] PETERSEN, K., VAKKALANKA, S., AND KUZNIARZ, L. Guidelines for conducting systematic
mapping studies in software engineering: An update. Information and Software Technology 64
(2015), to appear.

[191] PFEIFFER, R.-H., AND WĄSOWSKI, A. TexMo: A multi-language development environment.
In Lecture Notes in Computer Science (2012), vol. 7349 LNCS, pp. 178–193.

[192] PORUBÄN, J., FORGÁČ, M., SABO, M., AND BĚHÁLEK, M. Annotation based parser
generator. Computer Science and Information Systems 7, 2 (Apr. 2010), 291–307.

[193] PORUBÄN, J., AND NOSÁL’, M. Leveraging program comprehension with concern-oriented
source code projections. In 3rd Symposium on Languages, Applications and Technologies
(Dagstuhl, Germany, 2014), M. J. V. Pereira, J. P. Leal, and A. Simões, Eds., vol. 38 of
OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 35–50.

[194] RAHMAN, F., BIRD, C., AND DEVANBU, P. Clones: what is that smell? Empirical Software
Engineering 17, 4-5 (2012), 503–530.

[195] RAJLICH, V., AND WILDE, N. The role of concepts in program comprehension. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on (2002), pp. 271–278.

[196] RAJLICH, V., AND WILDE, N. A retrospective view on: The role of concepts in program
comprehension. In Program Comprehension (ICPC), 2012 IEEE 20th International Conference
on (June 2012), pp. 12–13.

[197] RÁSTOČNÝ, K., AND BIELIKOVÁ, M. Metadata anchoring for source code: Robust location
descriptor definition, building and interpreting. In Database and Expert Systems Applications,
H. Decker, L. Lhotská, S. Link, J. Basl, and A. M. Tjoa, Eds., vol. 8056 of Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 372–379.

[198] RATANOTAYANON, S., SIM, S., AND GALLARDO-VALENCIA, R. Supporting program
comprehension in agile with links to user stories. In Proceedings - 2009 Agile Conference,
AGILE 2009 (2009), pp. 26–32.

145

BIBLIOGRAPHY

[199] RATIU, D., AND DEISSENBOECK, F. Programs are knowledge bases. In Program Comprehen-
sion, 2006. ICPC 2006. 14th IEEE International Conference on (2006), pp. 79–83.

[200] RATIU, D., AND DEISSENBOECK, F. From reality to programs and (not quite) back again. In
Program Comprehension, 2007. ICPC ’07. 15th IEEE International Conference on (June 2007),
pp. 91–102.

[201] REINIKAINEN, T., HAMMOUDA, I., LAIHO, J., KOSKIMIES, K., AND SYSTA, T. Software
comprehension through concern-based queries. In Program Comprehension, 2007. ICPC ’07.
15th IEEE International Conference on (June 2007), pp. 265–270.

[202] REISS, S. P. The paradox of software visualization. In Proceedings of the 3rd IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analysis (Washington, DC,
USA, 2005), VISSOFT ’05, IEEE Computer Society, pp. 59–63.

[203] REISS, S. P. Tracking source locations. In Proceedings of the 30th International Conference
on Software Engineering (New York, NY, USA, 2008), ICSE ’08, ACM, pp. 11–20.

[204] RESSIA, J., BERGEL, A., AND NIERSTRASZ, O. Object-centric debugging. In Proceedings
of the 34th International Conference on Software Engineering (Piscataway, NJ, USA, 2012),
ICSE ’12, IEEE Press, pp. 485–495.

[205] REVELLE, M., BROADBENT, T., AND COPPIT, D. Understanding concerns in software:
insights gained from two case studies. In Program Comprehension, 2005. IWPC 2005. Proceed-
ings. 13th International Workshop on (May 2005), pp. 23–32.

[206] ROBERTS, C., WRIGHT, M., KUCHERA-MORIN, J., AND HÖLLERER, T. Gibber: Abstractions
for creative multimedia programming. In MM 2014 - Proceedings of the 2014 ACM Conference
on Multimedia (2014), ACM, pp. 67–76.

[207] ROBILLARD, M. P., AND MURPHY, G. C. Representing concerns in source code. ACM Trans.
Softw. Eng. Methodol. 16, 1 (Feb. 2007), 3:1–3:38.

[208] ROBILLARD, M. P., AND WEIGAND-WARR, F. ConcernMapper: Simple view-based sep-
aration of scattered concerns. In Proceedings of the 2005 OOPSLA Workshop on Eclipse
Technology eXchange (New York, NY, USA, 2005), eclipse ’05, ACM, pp. 65–69.

[209] ROEHM, T. Two user perspectives in program comprehension: End users and developer users.
In Proceedings of the 2015 IEEE 23rd International Conference on Program Comprehension
(Piscataway, NJ, USA, 2015), ICPC ’15, IEEE Press, pp. 129–139.

[210] RONG, X., YAN, S., ONEY, S., DONTCHEVA, M., AND ADAR, E. CodeMend: Assisting
interactive programming with bimodal embedding. In UIST 2016 - Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (2016), ACM, pp. 247–258.

[211] RÖTHLISBERGER, D., GREEVY, O., AND NIERSTRASZ, O. Exploiting runtime information
in the ide. In Proceedings of the 2008 The 16th IEEE International Conference on Program
Comprehension (Washington, DC, USA, 2008), ICPC ’08, IEEE Computer Society, pp. 63–72.

[212] RÖTHLISBERGER, D., HÄRRY, M., BINDER, W., MORET, P., ANSALONI, D., VILLAZÓN,
A., AND NIERSTRASZ, O. Exploiting dynamic information in IDEs improves speed and
correctness of software maintenance tasks. Software Engineering, IEEE Transactions on 38, 3
(May 2012), 579–591.

[213] RÖTHLISBERGER, D., NIERSTRASZ, O., DUCASSE, S., POLLET, D., AND ROBBES, R.
Supporting task-oriented navigation in IDEs with configurable HeatMaps. In Program Compre-
hension, 2009. ICPC ’09. IEEE 17th International Conference on (May 2009), pp. 253–257.

[214] ROY, C. K., CORDY, J. R., AND KOSCHKE, R. Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Programming 74,
7 (2009), 470–495. Special Issue on Program Comprehension (ICPC 2008).

146

Bibliography

[215] RUNESON, P., AND HÖST, M. Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14, 2 (2009), 131–164.

[216] SABO, M., AND PORUBÄN, J. Preserving design patterns using source code annotations.
Journal of Computer Science and Control Systems 2, 1 (2009), 53–56.

[217] SAIGAL, N., AND LIGATTI, J. Inline visualization of concerns. In Proceedings - 7th ACIS
International Conference on Software Engineering Research, Management and Applications,
SERA09 (2009), pp. 95–102.

[218] SAINI, V., SAJNANI, H., KIM, J., AND LOPES, C. SourcererCC and sourcererCC-I: Tools to
detect clones in batch mode and during software development. In Proceedings - International
Conference on Software Engineering (2016), IEEE Computer Society, pp. 597–600.

[219] SALINGER, S., OEZBEK, C., BEECHER, K., AND SCHENK, J. Saros: An Eclipse plug-in
for distributed party programming. In Proceedings - International Conference on Software
Engineering (2010), pp. 48–55.

[220] SANTOS, A. L. GUI-driven code tracing. In Visual Languages and Human-Centric Computing
(VL/HCC), 2012 IEEE Symposium on (Sept. 2012), pp. 111–118.

[221] SAVAGE, T., REVELLE, M., AND POSHYVANYK, D. FLAT3: Feature location and textual
tracing tool. In Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 2 (New York, NY, USA, 2010), ICSE ’10, ACM, pp. 255–258.

[222] SCHUGERL, P., RILLING, J., AND CHARLAND, P. Beyond generated software documentation
– a Web 2.0 perspective. In Software Maintenance, 2009. ICSM 2009. IEEE International
Conference on (Sept. 2009), pp. 547–550.

[223] SCHWARTZ, M. D., DELISLE, N. M., AND BEGWANI, V. S. Incremental compilation in
magpie. SIGPLAN Not. 19, 6 (June 1984), 122–131.

[224] SEO, H., SADOWSKI, C., ELBAUM, S., AFTANDILIAN, E., AND BOWDIDGE, R. Pro-
grammers’ build errors: A case study (at Google). In Proceedings of the 36th International
Conference on Software Engineering (New York, NY, USA, 2014), ICSE 2014, ACM, pp. 724–
734.

[225] SHAHIN, M., LIANG, P., AND BABAR, M. A. A systematic review of software architecture
visualization techniques. Journal of Systems and Software 94, Supplement C (2014), 161–185.

[226] SHERWOOD, K. D., AND MURPHY, G. C. Reducing code navigation effort with differential
code coverage. Tech. rep., Department of Computer Science, University of British Columbia,
Sept. 2008.

[227] SILLITO, J., MURPHY, G. C., AND DE VOLDER, K. Questions programmers ask during
software evolution tasks. In Proceedings of the 14th ACM SIGSOFT International Symposium
on Foundations of Software Engineering (New York, NY, USA, 2006), SIGSOFT ’06/FSE-14,
ACM, pp. 23–34.

[228] SJØBERG, D., HANNAY, J., HANSEN, O., KAMPENES, V., KARAHASANOVIĆ, A., LIBORG,
N.-K., AND REKDAL, A. A survey of controlled experiments in software engineering. Software
Engineering, IEEE Transactions on 31, 9 (Sept. 2005), 733–753.

[229] SMITH, J., BROWN, C., AND MURPHY-HILL, E. Flower: Navigating program flow in the
IDE. In Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC (2017), vol. 2017-October, IEEE Computer Society, pp. 19–23.

[230] SMITH, P. Software Build Systems: Principles and Experience. Addison-Wesley Professional,
2011.

[231] SOHAN, S. M., ANSLOW, C., AND MAURER, F. SpyREST: Automated RESTful API
documentation using an HTTP proxy server. In Proceedings of the 2015 30th IEEE/ACM

147

BIBLIOGRAPHY

International Conference on Automated Software Engineering (ASE) (Washington, DC, USA,
2015), ASE ’15, IEEE Computer Society, pp. 271–276.

[232] SPOLSKY, J. Joel on Software. Apress, Berkeley, CA, 2004, ch. The Joel Test: 12 Steps to
Better Code, pp. 17–30.

[233] SRIDHARA, G., HILL, E., MUPPANENI, D., POLLOCK, L., AND VIJAY-SHANKER, K.
Towards automatically generating summary comments for Java methods. In Proceedings of
the IEEE/ACM International Conference on Automated Software Engineering (New York, NY,
USA, 2010), ASE ’10, ACM, pp. 43–52.

[234] SRIDHARA, G., POLLOCK, L., AND VIJAY-SHANKER, K. Automatically detecting and de-
scribing high level actions within methods. In Proceedings of the 33rd International Conference
on Software Engineering (New York, NY, USA, 2011), ICSE ’11, ACM, pp. 101–110.

[235] SRIDHARA, G., POLLOCK, L., AND VIJAY-SHANKER, K. Generating parameter comments
and integrating with method summaries. In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension (Washington, DC, USA, 2011), ICPC ’11, IEEE
Computer Society, pp. 71–80.

[236] STEINERT, B., PERSCHEID, M., BECK, M., LINCKE, J., AND HIRSCHFELD, R. Debugging
into examples. In TESTCOM ’09/FATES ’09 (2009), Springer-Verlag, pp. 235–240.

[237] STEINERT, B., TAEUMEL, M., LINCKE, J., PAPE, T., AND HIRSCHFELD, R. CodeTalk
- conversations about code. In 8th International Conference on Creating, Connecting and
Collaborating through Computing, C5 2010 (2010), pp. 11–18.

[238] STEINMACHER, I., CHAVES, A. P., AND GEROSA, M. A. Awareness support in distributed
software development: A systematic review and mapping of the literature. Comput. Supported
Coop. Work 22, 2-3 (Apr. 2013), 113–158.

[239] STOREY, M. Theories, methods and tools in program comprehension: past, present and future.
In Program Comprehension, 2005. IWPC 2005. Proceedings. 13th International Workshop on
(May 2005), pp. 181–191.

[240] STOREY, M., RYALL, J., SINGER, J., MYERS, D., CHENG, L.-T., AND MULLER, M. How
software developers use tagging to support reminding and refinding. Software Engineering,
IEEE Transactions on 35, 4 (July 2009), 470–483.

[241] STOREY, M.-A., CHENG, L.-T., BULL, I., AND RIGBY, P. Shared waypoints and social
tagging to support collaboration in software development. In Proceedings of the 2006 20th
Anniversary Conference on Computer Supported Cooperative Work (New York, NY, USA,
2006), CSCW ’06, ACM, pp. 195–198.

[242] STOREY, M.-A., RYALL, J., BULL, R. I., MYERS, D., AND SINGER, J. TODO or to bug:
Exploring how task annotations play a role in the work practices of software developers. In
Proceedings of the 30th International Conference on Software Engineering (New York, NY,
USA, 2008), ICSE ’08, ACM, pp. 251–260.

[243] STOREY, M.-A. D., ČUBRANIĆ, D., AND GERMAN, D. M. On the use of visualization to
support awareness of human activities in software development: A survey and a framework.
In Proceedings of the 2005 ACM Symposium on Software Visualization (New York, NY, USA,
2005), SoftVis ’05, ACM, pp. 193–202.

[244] SULÍR, M. Program comprehension: A short literature review. In SCYR 2015: 15th Scientific
Conference of Young Researchers (May 2015), pp. 283–286.

[245] SULÍR, M., BAČÍKOVÁ, M., CHODAREV, S., AND PORUBÄN, J. Visual augmentation of
source code editors: A systematic review. Computer Languages, Systems & Structures (2018).
Submitted.

148

Bibliography

[246] SULÍR, M., AND NOSÁL’, M. Sharing developers’ mental models through source code
annotations. In 2015 Federated Conference on Computer Science and Information Systems
(FedCSIS) (Sept. 2015), pp. 997–1006.

[247] SULÍR, M., NOSÁL’, M., AND PORUBÄN, J. Recording concerns in source code using
annotations. Computer Languages, Systems & Structures 46 (Nov. 2016), 44–65.

[248] SULÍR, M., AND PORUBÄN, J. Semi-automatic concern annotation using differential code
coverage. In 2015 IEEE 13th International Scientific Conference on Informatics (Nov. 2015),
pp. 258–262. © 2015 IEEE.

[249] SULÍR, M., AND PORUBÄN, J. Trend analysis on the metadata of program comprehension
papers. In 2015 13th International Conference on Engineering of Modern Electric Systems
(EMES) (June 2015), pp. 153–156. © 2015 IEEE.

[250] SULÍR, M., AND PORUBÄN, J. Locating user interface concepts in source code. In 5th
Symposium on Languages, Applications and Technologies (SLATE’16) (Dagstuhl, Germany,
2016), vol. 51 of OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, pp. 6:1–6:9.

[251] SULÍR, M., AND PORUBÄN, J. A quantitative study of Java software buildability. In Pro-
ceedings of the 7th International Workshop on Evaluation and Usability of Programming
Languages and Tools (New York, NY, USA, 2016), PLATEAU 2016, ACM, pp. 17–25.
http://doi.org/10.1145/3001878.3001882.

[252] SULÍR, M., AND PORUBÄN, J. Exposing runtime information through source code annotations.
Acta Electrotechnica et Informatica 17, 1 (Apr. 2017), 3–9.

[253] SULÍR, M., AND PORUBÄN, J. Generating method documentation using concrete values from
executions. In 6th Symposium on Languages, Applications and Technologies (SLATE 2017)
(Dagstuhl, Germany, 2017), vol. 56 of OpenAccess Series in Informatics (OASIcs), Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 3:1–3:13.

[254] SULÍR, M., AND PORUBÄN, J. Labeling source code with metadata: A survey and taxonomy.
In 2017 Federated Conference on Computer Science and Information Systems (FedCSIS) (Sept.
2017), pp. 721–729.

[255] SULÍR, M., AND PORUBÄN, J. RuntimeSearch: Ctrl+F for a running program. In Proceedings
of the 2017 32nd IEEE/ACM International Conference on Automated Software Engineering
(ASE) (2017), pp. 388–393. © 2017 IEEE.

[256] SULÍR, M., AND PORUBÄN, J. Source code documentation generation using program execution.
Information 8, 4 (2017), 148.

[257] SULÍR, M., AND PORUBÄN, J. Augmenting source code lines with sample variable values. In
Proceedings of the 2018 26th IEEE/ACM International Conference on Program Comprehension
(ICPC) (May 2018). Accepted.

[258] SULÍR, M., PORUBÄN, J., AND ZORIČÁK, O. IDE-independent program comprehension
tools via source file overwriting. In 2017 IEEE 14th International Scientific Conference on
Informatics (2017), pp. 372–376. © 2017 IEEE.

[259] SUTHERLAND, A., AND SCHNEIDER, K. UI traces: Supporting the maintenance of interactive
software. In Software Maintenance, 2009. ICSM 2009. IEEE International Conference on (Sept.
2009), pp. 563–566.

[260] SUTHERLAND, C. J., LUXTON-REILLY, A., AND PLIMMER, B. Freeform digital ink annota-
tions in electronic documents: A systematic mapping study. Computers & Graphics 55 (2016),
1–20.

[261] SUZUKI, T., SAKAMOTO, K., ISHIKAWA, F., AND HONIDEN, S. An approach for evaluating
and suggesting method names using n-gram models. In Proceedings of the 22nd International

149

BIBLIOGRAPHY

Conference on Program Comprehension (New York, NY, USA, 2014), ICPC 2014, ACM,
pp. 271–274.

[262] SWIFT, B., SORENSEN, A., GARDNER, H., AND HOSKING, J. Visual code annotations for
cyberphysical programming. In Live Programming (LIVE), 2013 1st International Workshop on
(May 2013), pp. 27–30.

[263] TÁBORSKÝ, R., AND VRANIĆ, V. Feature model driven generation of software artifacts. In
2015 Federated Conference on Computer Science and Information Systems (FedCSIS) (Sept.
2015), pp. 1007–1018.

[264] TAIRAS, R., AND GRAY, J. Increasing clone maintenance support by unifying clone detection
and refactoring activities. Information and Software Technology 54, 12 (2012), 1297–1307.

[265] TAN, S. H., MARINOV, D., TAN, L., AND LEAVENS, G. T. @tComment: Testing Javadoc
comments to detect comment-code inconsistencies. In Proceedings of the 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation (Washington, DC,
USA, 2012), ICST ’12, IEEE Computer Society, pp. 260–269.

[266] TOOMIM, M., BEGEL, A., AND GRAHAM, S. Managing duplicated code with linked editing.
In Proceedings - 2004 IEEE Symposium on Visual Languages and Human Centric Computing
(2004), pp. 173–180.

[267] TSANTALIS, N., CHAIKALIS, T., AND CHATZIGEORGIOU, A. JDeodorant: Identification and
removal of type-checking bad smells. In Proceedings of the European Conference on Software
Maintenance and Reengineering, CSMR (2008), pp. 329–331.

[268] UDDIN, G., AND ROBILLARD, M. P. How API documentation fails. IEEE Software 32, 4
(July 2015), 68–75.

[269] UDDIN, M. S., ROY, C. K., AND SCHNEIDER, K. A. Towards convenient management of
software clone codes in practice: An integrated approach. In Proceedings of the 25th Annual
International Conference on Computer Science and Software Engineering (2015), IBM Corp.,
pp. 211–220.

[270] UNGAR, D., LIEBERMAN, H., AND FRY, C. Debugging and the experience of immediacy.
Communications of the ACM 40, 4 (Apr. 1997), 38–43.

[271] VÁCLAVÍK, P., PORUBÄN, J., AND MEZEI, M. Automatic derivation of domain terms
and concept location based on the analysis of the identifiers. Acta Universitatis Sapientiae.
Informatica 2, 1 (2010), 40–50.

[272] VASILESCU, B., SCHUYLENBURG, S. V., WULMS, J., SEREBRENIK, A., AND BRAND, M.
G. J. V. D. Continuous integration in a social-coding world: Empirical evidence from GitHub.
In Proceedings of the 2014 IEEE International Conference on Software Maintenance and
Evolution (Washington, DC, USA, 2014), ICSME ’14, IEEE Computer Society, pp. 401–405.

[273] VOELTER, M., SIEGMUND, J., BERGER, T., AND KOLB, B. Towards user-friendly projectional
editors. In Software Language Engineering (2014), Springer International Publishing, pp. 41–61.

[274] VON MAYRHAUSER, A., AND VANS, A. Program comprehension during software maintenance
and evolution. Computer 28, 8 (Aug. 1995), 44–55.

[275] WALTERS, B., FALCONE, M., SHIBBLE, A., AND SHARIF, B. Towards an eye-tracking
enabled IDE for software traceability tasks. In Traceability in Emerging Forms of Software
Engineering (TEFSE), 2013 International Workshop on (May 2013), pp. 51–54.

[276] WANG, J., PENG, X., XING, Z., AND ZHAO, W. An exploratory study of feature location
process: Distinct phases, recurring patterns, and elementary actions. In Proceedings of the 2011
27th IEEE International Conference on Software Maintenance (Washington, DC, USA, 2011),
ICSM ’11, IEEE Computer Society, pp. 213–222.

150

Bibliography

[277] WATSON, G., AND DEBARDELEBEN, N. Developing scientific applications using Eclipse.
Computing in Science and Engineering 8, 4 (2006), 50–61.

[278] WILDE, N., AND CASEY, C. Early field experience with the software reconnaissance technique
for program comprehension. In Software Maintenance 1996, Proceedings., International
Conference on (Nov. 1996), pp. 312–318.

[279] WILDE, N., GOMEZ, J., GUST, T., AND STRASBURG, D. Locating user functionality in old
code. In Software Maintenance, 1992. Proceedings., Conference on (Nov. 1992), pp. 200–205.

[280] WINKLER, S., AND PILGRIM, J. A survey of traceability in requirements engineering and
model-driven development. Softw. Syst. Model. 9, 4 (Sept. 2010), 529–565.

[281] WITTE, R., SATELI, B., KHAMIS, N., AND RILLING, J. Intelligent software development
environments: Integrating natural language processing with the Eclipse platform. In Lecture
Notes in Computer Science (2011), vol. 6657 LNAI, pp. 408–419.

[282] WOHLIN, C., RUNESON, P., HÖST, M., OHLSSON, M. C., REGNELL, B., AND WESSLÉN, A.
Experimentation in Software Engineering. Springer Publishing Company, Incorporated, 2012.

[283] XIE, J., CHU, B., LIPFORD, H., AND MELTON, J. ASIDE: IDE support for web application
security. In Proceedings of the 27th Annual Computer Security Applications Conference (2011),
pp. 267–276.

[284] XU, B., QIAN, J., ZHANG, X., WU, Z., AND CHEN, L. A brief survey of program slicing.
SIGSOFT Softw. Eng. Notes 30, 2 (Mar. 2005), 1–36.

[285] YOO, S., AND HARMAN, M. Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability 22, 2 (2012), 67–120.

[286] ZHANG, H., BABAR, M. A., AND TELL, P. Identifying relevant studies in software engineering.
Information and Software Technology 53, 6 (2011), 625–637. Special Section: Best papers from
the APSECBest papers from the APSEC.

[287] ZHANG, S., ZHANG, C., AND ERNST, M. D. Automated documentation inference to explain
failed tests. In Proceedings of the 2011 26th IEEE/ACM International Conference on Automated
Software Engineering (Washington, DC, USA, 2011), ASE ’11, IEEE Computer Society,
pp. 63–72.

[288] ZHENG, Y., CU, C., AND ASUNCION, H. Mapping features to source code through product
line architecture: Traceability and conformance. In Proceedings - 2017 IEEE International
Conference on Software Architecture, ICSA 2017 (2017), IEEE, pp. 225–234.

151

Selected Author’s Publications

Important Conferences
1. SULÍR, M., AND PORUBÄN, J. Augmenting source code lines with sample variable

values. In Proceedings of the 2018 26th IEEE/ACM International Conference on
Program Comprehension (ICPC) (May 2018). Accepted.

2. SULÍR, M., AND PORUBÄN, J. RuntimeSearch: Ctrl+F for a running program. In
Proceedings of the 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2017), pp. 388–393.

3. SULÍR, M., AND PORUBÄN, J. Labeling source code with metadata: A survey and
taxonomy. In 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS) (Sept. 2017), pp. 721–729.

4. SULÍR, M., AND PORUBÄN, J. Generating method documentation using concrete val-
ues from executions. In 6th Symposium on Languages, Applications and Technologies
(SLATE 2017) (Dagstuhl, Germany, 2017), vol. 56 of OpenAccess Series in Informatics
(OASIcs), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 3:1–3:13.

5. SULÍR, M., AND PORUBÄN, J. A quantitative study of Java software buildability.
In Proceedings of the 7th International Workshop on Evaluation and Usability of
Programming Languages and Tools (New York, NY, USA, 2016), PLATEAU 2016,
ACM, pp. 17–25.

6. SULÍR, M., AND PORUBÄN, J. Locating user interface concepts in source code. In 5th
Symposium on Languages, Applications and Technologies (SLATE’16) (Dagstuhl, Ger-
many, 2016), vol. 51 of OpenAccess Series in Informatics (OASIcs), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 6:1–6:9.

7. SULÍR, M., AND NOSÁL’, M. Sharing developers’ mental models through source code
annotations. In 2015 Federated Conference on Computer Science and Information
Systems (FedCSIS) (Sept. 2015), pp. 997–1006.

Current Contents Journals
8. SULÍR, M., BAČÍKOVÁ, M., CHODAREV, S., AND PORUBÄN, J. Visual augmenta-

tion of source code editors: A systematic review. Computer Languages, Systems &
Structures (2018). Submitted.

9. NOSÁL’, M., PORUBÄN, J., AND SULÍR, M. Customizing host IDE for non-programming
users of pure embedded DSLs: A case study. Computer Languages, Systems & Struc-

153

SELECTED AUTHOR’S PUBLICATIONS

tures 49 (2017), 44–65.
10. SULÍR, M., NOSÁL’, M., AND PORUBÄN, J. Recording concerns in source code using

annotations. Computer Languages, Systems & Structures 46 (2016), 44–65.

Other Journals
11. SULÍR, M., AND PORUBÄN, J. Source code documentation generation using program

execution. Information 8, 4 (2017), 148.
12. SULÍR, M., AND PORUBÄN, J. Exposing runtime information through source code

annotations. Acta Electrotechnica et Informatica 17, 1 (2017), 3–9.
13. NOSÁL’, M., SULÍR, M., AND JUHÁR, J. Language composition using source code

annotations. Computer Science and Information Systems 13, 3 (2016), 707–729.
14. SULÍR, M., AND ŠIMOŇÁK, S. A terse string-embedded language for tree searching

and replacing. Acta Electrotechnica et Informatica 14, 2 (2014), 28–35.

Other Conferences
15. SULÍR, M. Facilitating program comprehension with runtime metadata: A Report. In

SCYR 2018: 18th Scientific Conference of Young Researchers (May 2018). Accepted.
16. SULÍR, M., PORUBÄN, J., AND ZORIČÁK, O. IDE-independent program compre-

hension tools via source file overwriting. In 2017 IEEE 14th International Scientific
Conference on Informatics (Nov. 2017), pp. 372–376.

17. SULÍR, M. Facilitating program comprehension with source code labeling: A progress
report. In SCYR 2017: 17th Scientific Conference of Young Researchers (May 2017).

18. SULÍR, M. Improving program comprehension: Preliminary results and research plan.
In SCYR 2016: 16th Scientific Conference of Young Researchers (May 2016).

19. SULÍR, M., AND PORUBÄN, J. Semi-automatic concern annotation using differential
code coverage. In 2015 IEEE 13th International Scientific Conference on Informatics
(Nov. 2015), pp. 258–262.

20. SULÍR, M., AND PORUBÄN, J. Trend analysis on the metadata of program comprehen-
sion papers. In 2015 13th International Conference on Engineering of Modern Electric
Systems (EMES) (June 2015), pp. 153–156.

21. SULÍR, M. Program comprehension: A short literature review. In SCYR 2015: 15th
Scientific Conference of Young Researchers (May 2015), pp. 283–286.

154

	Introduction
	Program Comprehension
	Source Code Labeling
	Searching Concepts in Running Programs
	Generating Documentation from Runtime Values
	Augmenting Code Lines with Variable Values

	Program Comprehension Overview
	Research Field Definition
	Theories and Research Methods
	Techniques and Tools
	Overall Comprehension
	Feature Location
	Understanding the Details
	Investigating the Rationale
	Making Programs Comprehensible

	Trends
	Techniques
	Systems
	Research Methods
	Conclusion

	Buildability of Software Systems
	Synopsis
	Build Failure Proportion
	Method
	Results

	Build Error Types
	Method
	Results
	Error Types
	Error Categories

	Relation of Build Results to Project Properties
	Method
	Results

	Discussion
	Threats to Validity
	Related Work
	Conclusion
	Future Work

	Labeling Source Code with Metadata
	Method
	Search Strategy
	Inclusion Criteria
	Final Article List
	Data Extraction

	Taxonomy
	Source
	Target
	Presentation
	Persistence

	Approaches and Tools
	Human
	Code
	Runtime
	Interaction
	Collaboration
	Mixed Approaches

	Threats to Validity
	Related Work
	Other Labeling Forms
	Location Referencing
	Related Research Fields
	Terminology

	Conclusion

	Manual and Runtime-Based Concern Annotation
	The Effect of Annotations on Program Maintenance
	Hypotheses
	Variables
	Experiment Design
	Procedure
	Results
	Threats to Validity
	Conclusion

	Replication of the Controlled Experiment
	Method
	Results
	Threats to Validity
	Conclusion

	Automation of Concern Annotation
	Creating Annotation Types
	Differential Code Coverage
	Writing Annotations

	Comparing Manual and Automated Annotation
	Method
	Results
	Threats to Validity

	Related Work
	Concerns
	Annotations
	Differential Code Coverage
	Feature Mapping

	Conclusion

	Persisting Runtime Metadata
	Format
	Annotation-Based Metadata
	Comment-Based Metadata

	Workflow
	Local-Only Workflow
	Shared Workflow
	Workflow Selection

	Limitations
	Input of the Analysis
	Automatic Reloading
	Presentation Limitations
	Applicability to Other Languages

	Related Work
	Code Annotation
	Runtime Information
	IDE Extensions
	Workspace Sharing

	Conclusion

	Location of GUI Concepts in Source Code
	Method
	GUI Scraping
	Analysis

	Quantitative Results
	Occurrence Counts
	File Types

	Qualitative Results
	Strings Not Present in Code
	Strings Present in Code

	Threats to Validity
	Construct Validity
	External Validity
	Reliability

	Related Work
	GUI Ripping
	Feature Location Using GUIs
	Feature Location in General
	Other Studies

	Conclusion

	Searching in Runtime Values
	Runtime-Searching Approach
	User's View
	Principle
	Implementation Details

	Case Study
	Finding an Initial Point
	Searching for Occurrences
	The Fabricated Text Technique
	Non-GUI Strings
	Hypothesis Confirmation

	Performance
	Quantitative Evaluation
	Method
	Results
	Threats to Validity
	Conclusion

	Related Work
	Searching
	Debugging
	Concept Location

	Conclusion and Future Work

	Generating Documentation from Runtime Information
	Documentation Approach
	Tracing
	Selection of Examples
	Documentation Generation

	Qualitative Evaluation
	Utility Methods
	Data Structures
	Changing Target Object State
	Changing Argument State
	Operations Affecting External World
	Methods Doing Too Much
	Example Selection

	Quantitative Evaluation
	Documentation Length
	Overridden String Representation in Documentation

	Related Work
	Static Analysis and Repository Mining
	Dynamic Analysis

	Conclusion and Future Work

	Visual Source Code Augmentation
	Definition and History
	Definition
	Historical View

	Method
	Research Questions
	Selection Criteria
	Search Strategy
	Data Extraction
	Threats to Validity

	Taxonomy
	Source
	Type
	Visualization
	Location
	Target
	Interaction
	IDE

	Approaches and Tools
	Conclusion

	Augmenting Code Lines with Runtime Values
	Object Representation
	Recording Moment Selection
	Iteration Selection
	Iteration Detection
	Collection Efficiency
	Filtering of Variables
	Data Invalidation
	Conclusion

	Conclusion
	Summary
	Contributions
	Future Work

	Bibliography
	Selected Author's Publications
	Important Conferences
	Current Contents Journals
	Other Journals
	Other Conferences

