
Augmenting Source Code Lines with Sample Variable Values
Matúš Sulír

Technical University of Košice
Košice, Slovakia

matus.sulir@tuke.sk

Jaroslav Porubän
Technical University of Košice

Košice, Slovakia
jaroslav.poruban@tuke.sk

ABSTRACT
Source code is inherently abstract, which makes it difficult to un-
derstand. Activities such as debugging can reveal concrete runtime
details, including the values of variables. However, they require that
a developer explicitly requests these data for a specific execution
moment. We present a simple approach, RuntimeSamp, which col-
lects sample variable values during normal executions of a program
by a programmer. These values are then displayed in an ambient
way at the end of each line in the source code editor. We discuss
questions which should be answered for this approach to be usable
in practice, such as how to efficiently record the values and when
to display them. We provide partial answers to these questions and
suggest future research directions.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Software maintenance tools;

KEYWORDS
integrated development environment (IDE), source code augmenta-
tion, examples, variables, dynamic analysis

ACM Reference Format:
Matúš Sulír and Jaroslav Porubän. 2018. Augmenting Source Code Lines with
Sample Variable Values. In ICPC ’18: 26th IEEE/ACM International Conference
on Program Comprehension, May 27–28, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3196321.3196364

1 INTRODUCTION
Source code of a computer program is inherently abstract since it
contains a specification of all possible executions. Trying to under-
stand a program only by reading its source code is often difficult.
Consider the following excerpt from the method createNumber in
class NumberUtils of Apache Commons Lang1:

exp = str.substring(expPos + 1, str.length() - 1);

While the variable names give the programmer a hint about
their meaning, it requires non-negligible mental effort to construct
a mental model of the presented line. Now, consider the same line
augmented with concrete values of variables:

1https://commons.apache.org/proper/commons-lang/

ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in ICPC ’18:
26th IEEE/ACM International Conference on Program Comprehension, May 27–28, 2018,
Gothenburg, Sweden, https://doi.org/10.1145/3196321.3196364.

exp = str.substring(expPos + 1, str.length() - 1);

str: "1.1E-700F" expPos: 3 exp: "-700"

The programmer can now intuitively understand that the line
extracts the exponent from a string containing a decimal number
in the scientific notation. Furthermore, we can see that the removal
of the last character is necessary because it contains the suffix “F”
(float).

To perform an investigation of dynamic program properties, such
as concrete values of variables, developers often use debuggers [5].
For instance, newer versions of IntelliJ IDEA already display an
augmentation similar to the one presented above. However, the
use of a debugger requires additional effort from the programmer.
First, we must manually choose appropriate breakpoint locations
(although an approach by Steinert et al. [11] can simplify this). Next,
the program must be executed and the debugger must be guided
using the stepping operations to progressively reveal variable val-
ues. At one moment, only one state of the program is visible and
the programmer cannot get an overview of multiple states. Finally,
after these laborious tasks are performed, the obtained dynamic
information disappears as soon as the given lines become out of
scope or the debugging session is closed.

To tackle this problem, tracing tools and time-traveling debug-
gers record the program execution and then allow the programmer
to explore any part of the program in any recorded execution state.
Nevertheless, these tools still require the user to manually navigate
a large trace to select the relevant part. The runtime information
and the static source code view are separated, requiring the user to
switch between two disconnected views.

There exist several approaches trying to integrate runtime in-
formation directly into the source code editor, but the kinds of
information they display is often limited. Senseo [10] displays in-
formation such as lists of callers, callees and dynamic argument
types. Tralfamadore [6] is limited to argument and return values,
IDE sparklines [1] to numeric variable types.

Other approaches – Tangible code [7] and Pathfinder [9] – dis-
play variable values inline, but they are trace-focused: the program-
mer browses a trace and manually selects a point in the history
which should be displayed.

Although DynamiDoc [12] collects sample values at runtime,
the results are only generated documentation sentences, not an
interactive approach. Krämer et al. [4] integrate variable values
with source code in a live programming environment. Such envi-
ronments suffer from performance and scalability problems though.

In this article, we introduce an approach to present sample values
of variables to a developer in an ambient and unobtrusive manner.
Executions of tests or the application itself by a programmer are
partially recorded. Then, at the end of each line, a noneditable
comment-like label is displayed in the IDE. Each such label shows

https://doi.org/10.1145/3196321.3196364
https://commons.apache.org/proper/commons-lang/
https://doi.org/10.1145/3196321.3196364


ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Matúš Sulír and Jaroslav Porubän

Figure 1: Sample values augmentation in RuntimeSamp

the values of the local and instance variables read or written on the
given line, during one sample execution of this line.

A tool embodying this idea, RuntimeSamp, is implemented as a
plugin for IntelliJ IDEA combined with a load-time Java bytecode
instrumentation agent. For an illustration, see Figure 1. The source
code of RuntimeSamp is available online2.

While the approach itself seems simple, a number of interesting
questions arose during the process of designing it. In this paper,
we devise solutions to the encountered problems – some naive and
some more elaborate – and try to foster future research in this area.

2 AUGMENTATION APPROACH
In this section, we will present RuntimeSamp in more detail and
discuss the individual questions.

2.1 Object Representation
Since the variable values are to be displayed in the text editor,
they should be ideally represented on one line, using only a small
amount of space. For primitive values, such as integers or floats,
this is simple – we use their traditional mathematical notation.
The situation is more complicated for objects composed of many
properties. Therefore, we formulate our first question: Q1: How to
present complicated objects succinctly on a small space?

If we consider only purely textual representations, the most
straightforward solution is to call the “to string” method (e.g.,
toString in Java) on a particular object. This is also the solution
we used in RuntimeSamp (with a few exceptions, such as manu-
ally generating the array representation or shortening too long
descriptions). This approach has its disadvantages, though. In many
languages, generation of the string representation must be manu-
ally programmed for each class. Because it is useful almost exclu-
sively for debugging purposes, developers often omit it. This leaves
us with a default implementation similar to “MyClass@4a54c0de”,
which is obviously not useful.

It is trivial to recursively traverse all member variables of the
given object down to primitive values or to the given depth and au-
tomatically produce a string in the form “{member1: {sub-member1:
value1, sub-member2: value2, ...}, ...}.” Nevertheless, such a string
can be too long for the majority of objects. An interesting future re-
search idea is to filter the list of member variables of each object to
include only that relevant for comprehension. For example, we can
exclude members representing purely implementation details; or in-
clude only frequently read or recently changed fields. Finding what
2https://github.com/sulir/runtimesamp

constitutes a given member relevant and useful for comprehension
remains an open question.

Regarding graphical and semi-graphical representations, a uni-
versal waywould be to display a fully collapsed tree of all properties,
represented by a clickable plus-sign (⊞) directly in the editor. The
developer could expand it on demand and show the values of in-
terest. On the other hand, this approach could affect the ambient
nature of RuntimeSamp since it would require manual actions from
the developer.

While there exist methods of graphical representation gener-
ation (e.g., the Moldable Inspector [3]), they suffer from similar
shortcomings as the classical toString() – the implementation is
manual, optional and not universal.

2.2 Recording Moment Selection
One variable can be displayed multiple times on each line, every
time holding a different value. Thus the following question arises:
Q2:When exactly should we capture the values of variables?

The following options are available:
• after reading/writing a variable for the first time on this line,
• after the last reading/writing of it,
• at the end of the line.

Note the value will be displayed at the end of the line. To match its
visual position with its meaning, we selected the third option.

Our approach works with physical lines, so even if multiple
statements are present on the same line, each variable is displayed
only once in the augmentation.

An alternative would be to display a value directly next to each
variable in the code (as in Tangible Code [7]). While this would
improve spatial immediacy by lowering the distance between the
variable occurrence and its value, the source code editor could
easily become cluttered, especially in the case of more verbose
object representations.

2.3 Iteration Selection
The most important problem regarding our approach stems from
the fact that program execution is not sequential. Program con-
structs such as loops cause one source code line to be executed
multiple times, each time in a possibly different context. Therefore,
displaying an arbitrary sample value can cause confusion. Consider
the following augmented source code excerpt, separately counting
the sums of even and odd numbers:

1 for (int n : nums) nums: {1, 2} n: 1

2 if (n % 2 == 0) n: 1

3 even += n; n: 2 even: 2

4 else

5 odd += n; n: 1 odd: 1

Here, each line is augmented with the values recorded during
the first time the particular line was executed. Up to the second line,
everything seems to be consistent. However, at line 3, the value of
n suddenly becomes 2, even though on the previous line it was 1.
Clearly, the sample values at lines 1, 2 and 5 were recorded during
the first loop iteration, while the augmentation at line 3 comes
from the second one. This happened because the third line was not
executed at all in the first iteration.

https://github.com/sulir/runtimesamp


Augmenting Source Code Lines with Sample Variable Values ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

It is obvious that we can display only one iteration at a time.
This leaves us with a question: Q3: How to decide which iteration
to display?

The most elementary solution would be to insert a combo box
at each line containing a looping construct (in our case, for at
line 1) to enable a selection of a particular loop iteration from a list.
A similar solution was already used, e.g., in compacted sequence
diagrams [8]. However, this would require a nontrivial manual
action from the programmer. Imagine selecting a relevant iteration
from a list containing hundreds of items, without knowing any
information about them besides the iteration numbers.

First of all, we need to provide a convenient way to select an
iteration in which a particular line of interest was executed (an
iteration which covers it). In RuntimeSamp, we set the “line of
interest” to the line where the text cursor (caret) is currently located.
For example, if the caret is on line 3, we show the second iteration:

1 for (int n : nums) nums: {1, 2} n: 2

2 if (n % 2 == 0) n: 2

3 even += n; n: 2 even: 2

4 else

5 odd += n;

On the other hand, if the cursor is on line 5, the first iteration is
displayed:

1 for (int n : nums) nums: {1, 2} n: 1

2 if (n % 2 == 0) n: 1

3 even += n;

4 else

5 odd += n; n: 1 odd: 1

This way, we utilize the text cursor as an implicit pointer to the
programmer’s current focus point.

Of course, many lines can be covered by more than one itera-
tion. The choice of the most relevant one is most probably task-
dependent and remains an open research question.

Note that in Figure 1, the line with the return false; statement
is augmented with a check mark (✓). This is used for lines which
were executed during the given iteration but do not contain any
variables.

2.4 Iteration Detection
Although in the previous text, we intuitivelyworkedwith the notion
of an “iteration”, the situation is not always that simple. For instance,
a loop can contain a call to a method defined in another file. An
iteration statement is thus spatially disconnected from the place
of the manifestation of its effect. Furthermore, such a loop can
be located in a library or a system file which is not instrumented
and recorded. Finally, many languages contain a variety of looping
constructs which are difficult to recognize in the compiled bytecode.
This leaves us with question Q4: How to define an iteration in a
way which is easy to detect and present?

In RuntimeSamp, we used the notion of forward executions. As
long as the program progresses forward without jumping back, we
consider this one iteration, which we call a “pass”. Since in Run-
timeSamp, the recording and augmentation are line-oriented, we
consider only jumps to another line, not the same one. Execution of

another method starts a new pass; however, as soon as this method
returns control to the caller, the original pass continues. Our ap-
proach is simple to implement using a local variable called passId,
inserted into each method by instrumentation. This variable is as-
signed a new value on every method start and backward jump –
from a global variable passCounter, incremented on each read.

For an illustration, see the following code:

1 void caller() {

2 int i = 1;

3 callee();

4 i = 2;

5 }

6 void callee() { doSomething(); }

Lines 2, 3, and 4 are a part of the pass with ID 1; line 6 pertains to
pass ID 2.

2.5 Collection Efficiency
While the collection of all variable values in the whole program
during the whole execution gives precise results, it is clearly not
practical because of high time overhead and storage requirements.
The following question arises: Q5: How to collect enough data for
sample values presentation while keeping the overhead reasonable?

In RuntimeSamp, we aim to present sample values at the end
of each line. Therefore, it is convenient to collect values at least
once for every line being executed. In the current implementation,
we use a simple logic. In a global array called hits, we keep the
number of times each particular line of the program (identified by
its lineId) was executed. As soon as a hard-coded “hits per line”
limit is reached, we stop data collection for the given line.

When combined with the iteration detection approach described
in the previous section, the result is depicted in Algorithm 1. Note
that to prevent the likely overflow of passCounter, we first reset
the passId to 0 and obtain a new value from passCounter only
when the data will be actually collected.

On each method start do:
passId ← 0;

Each time when the executing line is about to change from
currentLine to nextLine do:
if hits[lineId] < HITS_PER_LINE then

hits[lineId]++;
if passId = 0 then

passId ← passCounter++;
end
SaveToDb(fileName, currentLine, passId);
for each variable read/written on currentLine do

SaveToDb(passId, name, value.toString())
end

end
if nextLine < currentLine then

passId ← 0;
end
Algorithm 1: Variable-recording instrumentation



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden Matúš Sulír and Jaroslav Porubän

Table 1: Time overhead of instrumented runs

Hits per line Overhead for benchmark
avrora fop h2 xalan

1 0.78 2.13 1.84 0.88
2 0.89 2.37 2.07 0.93
3 0.98 2.63 2.23 1.19

Clearly, the presented algorithm, which records the first n ex-
ecutions of each line, is not ideal. Consider the source code from
section 2.3 was executed with nums containing a thousand even
items and one odd item as the last element. We would need to
record the first iteration, then skip recording of 999 iterations and
record the last one. In case the array was dynamically generated,
a nontrivial prediction using dynamic analysis would need to be
applied. Otherwise, we need to either capture all executions and
sacrifice performance, or end up with incompletely recorded passes.
In the example from section 2.3, with HITS_PER_LINE in our al-
gorithm set to 1, two passes are recorded: the first pass containing
lines 1, 2, 3; and the second one containing only line 5.

We performed a preliminary performance evaluation of our ap-
proach. In Table 1, we present time overhead of the instrumented
runs when compared to plain, non-instrumented ones (zero means
no overhead). The benchmarks come from DaCapo [2], version 9.12-
MR1. Auxiliary libraries and system classes were not instrumented.
Beware our implementation is naive and can clearly be improved.

Wemay also consider collecting data only for a limited part of the
program or an execution period. For example, the values of relevant
variables could augment the source code when the program crashed
due to an uncaught exception.

2.6 Filtering of Variables
A lot of data can visually clutter the editor and cause information
overload. Thus our next question is Q6: Which variable values
should be displayed and which not? Currently, we show all vari-
ables except same-named variables on the same line – e.g., in the
expression this.var = var, we show only one var. In the future,
it is possible to devise other filtering patterns to achieve the optimal
ratio between readability and completeness.

2.7 Data Invalidation
Our final question is Q7:When and how to invalidate the collected
variable values? Currently, as a preliminary form of invalidation, we
delete all data on any document edit. Of course, a more reasonable
solution is to delete only data pertinent to statements dependent
on the made changes. However, we can go even further: The aug-
mentation of values which could be recomputed in a reasonable
time (and without requiring additional input) should be updated in
the editor, which would enable partial liveness.

3 CONCLUSION
We regard the source code view as the primary view of the program-
mer’s interest. Therefore, we aim to deliver a “feeling of runtime”
to the static source code by the means of augmenting source code

editor lines with examples of concrete variable values. Our final
goal is to make runtime information in the editor:
• ambient – using implicit interaction information instead of
requiring manual actions,
• unobtrusive – not requiring a change of the developer’s tools
or workflow,
• relevant – thus aiming to leverage program comprehension.

Throughout the paper, we discussed several questions related to
these properties. Still, many questions remain to be answered in
future experiments. Particularly, an evaluation with human partici-
pants (industrial developers, students) should be performed, both to
quantitatively confirm the utility of RuntimeSamp and to provide
qualitative insights about the decisions made when designing it.

ACKNOWLEDGMENTS
This work was supported by project KEGA 047TUKE-4/2016 Inte-
grating software processes into the teaching of programming.

REFERENCES
[1] Fabian Beck, Fabrice Hollerich, Stephan Diehl, and Daniel Weiskopf. 2013. Vi-

sual monitoring of numeric variables embedded in source code. In Software
Visualization (VISSOFT), 2013 First IEEE Working Conference on. 1–4. https:
//doi.org/10.1109/VISSOFT.2013.6650545

[2] Stephen M. Blackburn et al. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications.
ACM, New York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[3] Andrei Chiş, Oscar Nierstrasz, Aliaksei Syrel, and Tudor Gîrba. 2015. The
Moldable Inspector. In 2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward! 2015). ACM,
New York, NY, USA, 44–60. https://doi.org/10.1145/2814228.2814234

[4] Jan-Peter Krämer, Joachim Kurz, Thorsten Karrer, and Jan Borchers. 2014. How
live coding affects developers’ coding behavior. In 2014 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). 5–8. https://doi.org/10.
1109/VLHCC.2014.6883013

[5] Thomas D. LaToza and Brad A. Myers. 2010. Developers Ask Reachability Ques-
tions. In Proceedings of the 32nd ACM/IEEE International Conference on Soft-
ware Engineering - Volume 1 (ICSE ’10). ACM, New York, NY, USA, 185–194.
https://doi.org/10.1145/1806799.1806829

[6] Geoffrey Lefebvre, Brendan Cully, Christopher Head, Mark Spear, Norm Hutchin-
son, Mike Feeley, and AndrewWarfield. 2012. Execution Mining. In Proceedings of
the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments (VEE
’12). ACM, New York, NY, USA, 145–158. https://doi.org/10.1145/2151024.2151044

[7] David A. Mellis. 2006. Tangible Code. Thesis Report. Interaction Design Insitute
Ivrea. http://dam.mellis.org/thesis/

[8] Del Myers, Margaret-Anne Storey, and Martin Salois. 2010. Utilizing Debug
Information to Compact Loops in Large Program Traces. In Proceedings of the
2010 14th European Conference on Software Maintenance and Reengineering (CSMR
’10). IEEE Computer Society, Washington, DC, USA, 41–50. https://doi.org/10.
1109/CSMR.2010.19

[9] Michael Perscheid, Bastian Steinert, Robert Hirschfeld, Felix Geller, and Michael
Haupt. 2010. Immediacy Through Interactivity: Online Analysis of Run-time
Behavior. In Proceedings of the 2010 17th Working Conference on Reverse En-
gineering (WCRE ’10). IEEE Computer Society, Washington, DC, USA, 77–86.
https://doi.org/10.1109/WCRE.2010.17

[10] David Röthlisberger, Marcel Härry, Walter Binder, Philippe Moret, Danilo Ansa-
loni, Alex Villazón, and Oscar Nierstrasz. 2012. Exploiting Dynamic Infor-
mation in IDEs Improves Speed and Correctness of Software Maintenance
Tasks. Software Engineering, IEEE Transactions on 38, 3 (May 2012), 579–591.
https://doi.org/10.1109/TSE.2011.42

[11] Bastian Steinert, Michael Perscheid, Martin Beck, Jens Lincke, and Robert
Hirschfeld. 2009. Debugging into Examples. In TESTCOM ’09/FATES ’09. Springer-
Verlag, 235–240. https://doi.org/10.1007/978-3-642-05031-2_18

[12] Matúš Sulír and Jaroslav Porubän. 2017. Generating Method Documentation
Using Concrete Values from Executions. In 6th Symposium on Languages, Appli-
cations and Technologies (SLATE 2017) (OpenAccess Series in Informatics (OASIcs)),
Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
3:1–3:13. https://doi.org/10.4230/OASIcs.SLATE.2017.3

https://doi.org/10.1109/VISSOFT.2013.6650545
https://doi.org/10.1109/VISSOFT.2013.6650545
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/2814228.2814234
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1109/VLHCC.2014.6883013
https://doi.org/10.1145/1806799.1806829
https://doi.org/10.1145/2151024.2151044
http://dam.mellis.org/thesis/
https://doi.org/10.1109/CSMR.2010.19
https://doi.org/10.1109/CSMR.2010.19
https://doi.org/10.1109/WCRE.2010.17
https://doi.org/10.1109/TSE.2011.42
https://doi.org/10.1007/978-3-642-05031-2_18
https://doi.org/10.4230/OASIcs.SLATE.2017.3

