
Citation: Chodarev, S.; Sulír, M.;

Porubän, J.; Kopčáková, M.

Experimental Comparison of Editor

Types for Domain-Specific

Languages. Appl. Sci. 2022, 12, 9893.

https://doi.org/10.3390/

app12199893

Academic Editor: Vito Conforti

Received: 29 July 2022

Accepted: 28 September 2022

Published: 1 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Experimental Comparison of Editor Types for
Domain-Specific Languages
Sergej Chodarev * , Matúš Sulír , Jaroslav Porubän and Martina Kopčáková

Department of Computers and Informatics, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia
* Correspondence: sergej.chodarev@tuke.sk

Abstract: The editor type can influence the user experience for a domain-specific language, but
empirical evaluation of this factor is still quite limited. In this paper, we present the results of our
empirical study, in which we compare the productivity of users with different kinds of editors for the
same domain-specific language. We chose the domain of quiz definitions and used three editors: a
text editor with syntax highlighting and code completion developed with the Xtext framework, a
projectional editor created using JetBrains MPS, and an existing form-based editor—Google Forms.
The study was performed on 37 graduate students of computer science. The measured time was
lower for the text editor than for the form-based editor, and the form-based editor’s time was lower
than the projectional one’s; however, the results were statistically insignificant. The experiment was
also complemented with a survey providing insight into the perception of different editor types
by users.

Keywords: domain-specific languages; text editor; projectional editor; form-based editing; experiment

1. Introduction

A metamodel of a domain-specific language (DSL) defines its core concepts and
structure, but user perception of a language is greatly influenced by the notation and the
tools used to create and edit models expressed in the DSL [1]. There are not only purely
textual vs. purely graphical languages and corresponding editors. Although the boundaries
might not be precise, from the user’s point of view, we can distinguish three types of DSL
editors that combine textual and visual representation differently and provide different
modes of interaction: advanced textual editors, projectional editors, and form-based editors.

Advanced textual editors or IDEs (integrated development environments) enhance
the text with syntax highlighting or even display some additional visual information [2,3].
An advanced editor can also help with entering or modifying the text, using such features
as code completion or refactoring operations. Advanced editors provide suggestions to the
user on what can be entered in a specific context and what is the meaning of each alternative.
This allows users to discover language constructs directly during the programming process
or helps them to recall the exact names and syntax of language constructs.

Another option is a projectional editor [4] that allows users to modify the internal
representation of a model using editable projection and therefore eliminates parsing. The
projection itself is mostly textual but can be combined with graphical, tabular, or other
notations. A notable property of projectional editors is that they should not be able to
produce syntactically invalid input.

A projectional editor can be viewed as halfway in the direction of a form-based
editor. While projectional editors still use mostly textual notation and try to mimic the
text-editing experience, form-based editors utilize the components of common graphical
user interfaces to represent the model using interconnected forms. Users interact with items
such as windows, buttons, text fields, and checkboxes while utilizing familiar interactions,
e.g., clicking, dragging, and dropping. Such traditional graphical user interfaces can be
considered visual editors of the underlying domain-specific language models [5].

Appl. Sci. 2022, 12, 9893. https://doi.org/10.3390/app12199893 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12199893
https://doi.org/10.3390/app12199893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9293-0859
https://orcid.org/0000-0003-2221-9225
https://orcid.org/0000-0001-9706-2897
https://doi.org/10.3390/app12199893
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12199893?type=check_update&version=2

Appl. Sci. 2022, 12, 9893 2 of 16

There are some recommendations on the use of different language notations, and some
of their trade-offs are known (e.g., [6]). Another, different aspect of DSLs is the language
implementation approach: implementing a language from scratch or using language
workbenches that simplify language definition, either with classical parsing technologies
(e.g., Xtext or Spoofax) or with projectional and graphical editing (e.g., JetBrains MPS, or
MetaEdit+). A discussion of the advantages and shortcomings of such approaches for
language designers already exists [7]. However, we are not aware of any human-based
empirical study comparing different editor kinds from the DSL user’s point of view.

The main goal and the contribution of the presented work is, therefore, an experimental
evaluation of different types of editors for domain-specific languages. We have conducted
experiments where we compared three editors for the same DSL:

1. A text editor with syntax highlighting and code completion based on Eclipse IDE
(Xtext);

2. A projectional editor based on JetBrains MPS;
3. A form-based web editor.

Our hypothesis for the experiment was that the choice of the editor type would have a
significant impact on the language users’ productivity.

While the scope of the experiment was quite limited and does not allow us to make
definitive conclusions, it provides useful insights into the efficiency of using different kinds
of editors for DSLs.

2. Language and Editors

For the purpose of our experiment, we chose a simple DSL for defining quizzes. It is a
simple and well-known domain, so it is easier for users to learn the language. In addition,
existing form editors are available for the domain.

We chose Google Forms (https://docs.google.com/forms/; accessed on 29 July 2022)
as the basis for our language design. We analyzed the tool and extracted a simplified
version of the metamodel of the quiz definition language from this editor. This metamodel
was used as the basis for developing two other notations of the language and corresponding
editors.

The metamodel is shown in Figure 1. A quiz has a name, a description, and a list of
questions of different types. Most of the question types have a set of correct and incorrect
answers. In addition, each question can have an answer key defining the number of points
for correct answers and an optional feedback text.

Quiz

name: string

description: string

Question

name: string

required: boolean

Short Answer Question

1..*

Paragraph Answer Question

Multiple Choice Question

Checkbox Answer Question

Dropdown Answer Question

Answer

text: string

correct: boolean

0..*

1..*

1..*

1..*

Answer Key

points: integer

0..1

Feedback0..1

All Answers Feedback

feedbackText: string

Both Answers Feedback

correctAnswerFeedback: string

correctAnswerFeedback: string

Figure 1. The metamodel of the simplified quiz definition language.

https://docs.google.com/forms/

Appl. Sci. 2022, 12, 9893 3 of 16

2.1. Form-Based Editor

Google Forms itself is used as an example of a form-based editor for language. Its
name, Forms, is purely coincidental in this case, and it is only a specific example of a form-
based editor. This web application provides interactive forms for defining quiz properties
and questions.

The editor displays questions in the same way as they would be shown to quiz
participants. Clicking on the question replaces the preview with the editor form, where
the question type, text, and answer choices can be filled. The answer key and feedback are
edited in separate forms accessible by buttons. An example quiz definition in the editor is
shown in Figure 2.

Figure 2. Example quiz in the Google Forms editor.

As Bačíková et al. [5] showed, a GUI (graphical user interface) instance with form
items corresponds to a DSL sentence. For example, an input field labeled “Points:” with a
value of 5 in a GUI can represent the attribute “points” of an answer key in a model, in the
same way as the string “Points: 5” represents it in a text editor. Therefore, we consider a
form-based editor a full-fledged alternative to text and projectional editors.

2.2. Advanced Text Editor

Xtext [8] was used as a tool for the implementation of a textual language and a
corresponding advanced textual editor. Xtext is a framework for the development of
general-purpose and domain-specific languages. It uses language grammar definition to
generate a parser, checker, and advanced editor based on the Eclipse IDE or using Language
Server Protocol. All of the generated artifacts can be configured or extended using the
provided API.

The language model extracted from the Google Forms application (Figure 1) was
used to define a textual language using Xtext. Xtext generated a specialized editor for the
language with syntax highlighting and code completion (see Figure 3).

Appl. Sci. 2022, 12, 9893 4 of 16

Figure 3. Example quiz in the Xtext-based editor.

2.3. Projectional Editor

As an example of a projectional editor, we chose a leading language workbench that
uses this principle—JetBrains MPS (https://www.jetbrains.com/mps/; accessed on 29 July
2022). Language definition in MPS is based on a metamodel. The model becomes the main
representation of programs instead of a textual representation. This means that instead of
parsing the textual form of a sentence into an internal model, MPS allows editing of the
model through the projection.

The metamodel from Figure 1 was replicated in the MPS, and a projectional editor was
defined. The editor is similar to the textual editor developed using Xtext. It provides high-
lighting of keywords and code completion for choosing language elements (see Figure 4).
In addition, because the edited form is just a projection of the model, it does not allow
entering syntactically invalid input. On the one hand, this guides a user and eliminates a
lot of potential errors. On the other hand, it limits a user and requires some specific mode
of interaction instead of the flexibility of a plain text editor.

Figure 4. Example quiz in the MPS-based editor.

3. Method

The study was designed as a controlled experiment complemented by a quantitative
and qualitative survey.

3.1. Hypotheses

The controlled experiment was divided into two parts that can be considered separate
experiments from the point of view of the statistical analysis. For the first experiment, the
hypotheses were as follows:

• HX0: There is no difference in the time spent on the tasks using an advanced text editor
(Xtext) compared to a form-based editor (Google Forms).

• HX1: There is a difference in the time spent on the tasks using an advanced text editor
(Xtext) compared to a form-based editor (Google Forms).

For the second experiment, the hypotheses were the following:

https://www.jetbrains.com/mps/

Appl. Sci. 2022, 12, 9893 5 of 16

• HM0: There is no difference in the time spent on the tasks using a projectional editor
(MPS) compared to a form-based editor (Google Forms).

• HM1: There is a difference in the time spent on the tasks using a projectional editor
(MPS) compared to a form-based editor (Google Forms).

3.2. Variables

In each of the two experiment parts, the independent variable was the type of the
editor being used: an advanced text editor, a projectional editor, or a form-based editor.

There was one dependent variable: the time spent on the tasks by the participants,
measured in seconds.

3.3. Experiment Design

For each part of the experiment, we used the within-subject design, so each participant
performed the specified tasks using two editors:

1. Xtext and Google Forms, or
2. JetBrains MPS and Google Forms.

Because the sequence of the editors in which the experiment participants perform
the tasks can influence the results, we used counter-balancing, so the participants were
randomly divided into two subgroups with a different order of the editors.

3.4. Tasks

The tasks were designed in such a way that they would be easy to complete for all
participants. This allowed us to measure and compare only the time of completion.

Participants were given an existing quiz with 3 questions. Then they needed to
perform 3 tasks with subtasks:

1. Small changes in existing questions and answers: make a specific question required,
change the text of one of the answers and mark it as correct, and change the number
of points for a specific question.

2. Addition of elements into an existing question: a new answer, the number of points
for the question, and feedback for a correct answer were added.

3. Addition of new question: the question type, text, and answers were specified.

The tasks allowed participants to gradually become familiar with the language and
the editor and also covered different kinds of typical editing needs—both reading and
modifying the existing model, and adding new elements.

3.5. Survey

The survey contained four questions about each of the editors. The participants needed
to assess on the 5-point Likert scale how simple or difficult it was to

1. Change the parameters of an existing question;
2. Add new parameters to an existing question;
3. Define a completely new question;
4. Learn how to work with the editor.

The scale was from 1—simple to 5—difficult.
After these questions, there was a free-form question about their opinion on the editors

and which of them they would choose in the future.

3.6. Participants

The participants of the study were graduate students of Computer Science at the
Technical University of Košice studying the Metaprogramming course. There were 39
participants in total. Two of them were excluded from the results: one performed the tasks
in both editors at the same time, and the other did not complete the tasks. As a result, we
had 37 participants who completely finished the tasks: 20 in the Xtext vs. Forms group,
and 17 in the MPS vs. Forms group.

Appl. Sci. 2022, 12, 9893 6 of 16

3.7. Setup

Because of the restrictions connected to the COVID-19 pandemic, the experiment was
performed online.

The subjects connected to a Windows Server 2019 virtual machine. User accounts were
created on this computer for all participants in the experiments. The following programs
and files had been prepared for each user account and were launched after logging in:

• OBS Studio for screen recording;
• WordPad with the specification of the experiment tasks;
• Jetbrains MPS or Eclipse Xtext with a prepared simple quiz for performing tasks;
• A web browser with instructions for the tested domain-specific language and editors,

a Google Forms quiz for performing tasks, and an experiment survey.

3.8. Procedure

The instructions for performing the experiment were sent to the participants via email,
which included the instructions for connecting to the virtual machine together with the
login details for the user account.

After connecting to the virtual machine using a remote desktop, the participants
were able to study the prepared documentation and tasks. The documentation included a
short tutorial about the creation and editing of questions in both editors assigned to the
given participant.

When the subjects were prepared to begin their tasks, they needed to turn on screen
recording to evaluate the time required to complete the tasks. They performed the specified
task in two editors in the given order. After completion, they turned off the recording and
filled out the final survey.

3.9. Data Collection

Two forms of data were collected: screen recordings of the participants performing
the tasks and the results of the final survey. For each user account, we evaluated the screen
recording and measured the time of completion of the tasks in the individually tested
editors.

3.10. Statistical Analysis

For each experiment part and each value of the independent variable, we displayed
the values of the dependent variable on a histogram and a normal Q–Q plot. Since the data
were not normally distributed, we used the Wilcoxon signed-rank test to assess statistical
significance. We chose a standard value of α (0.05).

4. Results

In this section, we first present the results of both parts of the controlled experiment.
Then, we summarize the quantitative and qualitative findings from the survey.

4.1. Controlled Experiment

For the experiment comparing an advanced text editor and a form-based editor, the
collected results are displayed textually in Table 1 and graphically in Figure 5.

The median time spent on the tasks in the Xtext group was 381 s, while in the Google
Forms group it was 390.5 s (2.43% faster). The Google Forms group had a longer upper tail,
so the difference in means is larger: 382.95 s for an advanced text editor and 432.40 s for a
form-based editor (11.44%).

The computed p-value was 0.1054, which is more than α (0.05). Therefore, the differ-
ence between the groups was not statistically significant.

The results of the experiment comparing a projectional and form-based editor can be
seen in Table 2 and Figure 6.

Appl. Sci. 2022, 12, 9893 7 of 16

Table 1. Results of the XText vs. Google Forms experiment.

ID Xtext (s) Google Forms (s)

1 416 450
2 345 255
3 310 300
4 288 327
5 356 380

6 466 549
7 488 490
8 447 354
9 418 339
10 406 336

11 480 561
12 414 531
13 610 748
14 292 386
15 206 255

16 260 355
17 321 395
18 204 540
19 595 430
20 337 667

Median 381.00 390.50
Mean 382.95 432.40

Std. Dev. 112.62 133.33

Xtext Google Forms

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

Group

S
e
c
o
n
d
s

Figure 5. Results of the XText vs. Google Forms experiment.

Appl. Sci. 2022, 12, 9893 8 of 16

Table 2. Results of the MPS vs. Google Forms experiment.

ID MPS (s) Google Forms (s)

1 243 217
2 276 277
3 323 387
4 260 462
5 428 276

6 387 378
7 393 326
8 559 374
9 303 381
10 726 576

11 841 461
12 395 411
13 365 330
14 707 389
15 613 674

16 572 370
17 270 263

Median 393.00 378.00
Mean 450.65 385.41

Std. Dev. 184.69 113.46

MPS Google Forms

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

Group

S
e
c
o
n
d
s

Figure 6. Results of the MPS vs. Google Forms experiment.

In the MPS group, the median time to complete the tasks was 393 s. The Google Forms
group achieved a median of 378 s, which is 3.82% faster. We observed a much larger variance
in the MPS group, especially in the upper tail. Therefore, the means are 450.65 s for MPS
compared to 385.41 s in the Google Forms group. The relative difference of means was 14.48%.

Appl. Sci. 2022, 12, 9893 9 of 16

In this second experiment, we computed a p-value of 0.1350, which means the differ-
ence between groups was not significant.

After combining the results, the best times were measured for the Xtext editor followed
by Google Forms and finally MPS. However, the differences were not statistically significant,
so we cannot reject the null hypotheses (HX0, HM0) with enough confidence.

This does not mean, however, that the three editor approaches do not differ in editing
efficiency in general. Negative or inconclusive results relate only to the specific context
that was tested [9]. In our case, the most probable cause of the obtained results was the
simplicity of the language on one side and the proficiency of the subjects on the other side.
The participants were master’s degree computer science students, often with professional
programming experience, while DSLs are usually targeted at non-programming domain
experts. Subjects without any previous programming experience often fail to cope with
concepts that are obvious to developers, such as nested parentheses [10]. Therefore, we
could expect different results for other participant populations.

4.2. Quantitative Survey Results

Subjective evaluation of the editors provided by the participants in the survey is
summarized in Figures 7 and 8. Diagrams show the number of each answer type on the
Likert scale, where 1 means simple and 5 means difficult.

0% 20% 40% 60% 80% 100%

Forms: learn editor
Xtext: learn editor

Forms: define question
Xtext: define question

Forms: add parameter
Xtext: add parameter

Forms: change parameters
Xtext: change parameters

1—simple 2 3 4 5—difficult

Figure 7. Survey results of the Xtext vs.Google Forms experiment.

0% 20% 40% 60% 80% 100%

Forms: learn editor
MPS: learn editor

Forms: define question
MPS: define question

Forms: add parameter
MPS: add parameter

Forms: change parameters
MPS: change parameters

1—simple 2 3 4 5—difficult

Figure 8. Survey results of the MPS vs.Google Forms experiment.

Appl. Sci. 2022, 12, 9893 10 of 16

Participants considered all aspects of editing to be rather simple. Xtext and MPS
had slightly more answers on the simple side of the scale, while Google Forms was quite
difficult for several participants.

Participants also selected which editor they would choose in the future to define a
quiz. Their choices are shown in Figure 9. In the first experiment, the participants preferred
Xtext (14 votes) over Google Forms (6 votes). In the second one, they preferred MPS (11
votes) over Google Forms (6 votes).

0% 20% 40% 60% 80% 100%

MPS vs. Forms

Xtext vs. Forms

Xtext MPS Forms

Figure 9. Editor type students would prefer in the future.

4.3. Qualitative Survey Results

In addition to their preference, we asked participants about the reasons why they
would prefer a specific editor in the future.

4.3.1. Text Editor

Xtext was quite popular in the participants’ answers. The main reason they mentioned
was the efficiency of working with a keyboard instead of a mouse. In addition, the textual
representation allowed for simple copying of parts of the quiz definition.

They also mentioned better clarity of the textual representation: all details of questions
are directly visible and do not require switching between separate forms as in the case of
Google Forms.

Plain-text editors allow the users to easily customize the visual appearance of a DSL
sentence being constructed by using spaces, tabulators, and newlines. Thanks to this,
certain constructs can be aligned horizontally to resemble table-like structures. Of course,
this only holds for whitespace-insensitive languages.

A particularly interesting advantage was mentioned by one subject: the plain-text
format is more straightforward to synchronize and merge across multiple versions. This
makes it the preferred format when the collaboration of multiple persons is expected.
However, ongoing research in the area of conflict-free replicated data types [11] aims to
enable the synchronization of more complicated data structures without conflicts.

Another advantage of textual languages is the possibility to copy and paste arbitrary
portions of code without any limitations. In contrast to this, projectional editors have
specific rules on which portions can be copied and how, and in form-based editors, the user
depends entirely on the options provided by the GUI creator.

Finally, users’ confidence in their actions and the effects they produce also plays a role
in the selection of the preferred editor type. As one participant stated about Xtext: “I have
the feeling of greater control over what I do”.

4.3.2. Projectional Editor

Similar to Xtext, the participants positively assessed the effectiveness of keyboard
control and the clarity of the textual notation. Some of them mentioned that the editing
was intuitive.

Other participants, however, considered the projectional editing style to be unintuitive.
They explained that a user must be more careful with the editor because it is easy to delete
some elements by mistake.

The absence of shortcuts from traditional text editors, such as Ctrl+Backspace to delete
the last word, tended to be criticized. Some subjects also suggested that specific actions,
e.g., navigation to the nearest unfilled parameter, should have domain-specific keyboard
shortcuts, which could improve user experience.

Appl. Sci. 2022, 12, 9893 11 of 16

The projectional editor was also praised for standardized error reporting. All errors
are marked with a consistent visual style. It is also possible to list all issues, regardless of
their type, in one simple view. On the other hand, in form-based editors, the error reporting
style depends completely on the choice of the DSL developer.

Preferring a given editor type can be also a matter of culture. One subject responded,
simply, “MPS, I’m a geek”.

4.3.3. Form-Based Editor

The main advantage of Google Forms mentioned by our participants was the fact that
users do not need to learn and remember the syntax and keywords of the language. All
available options are presented in the forms that users can fill or select from the available
options. Therefore, the interface is easy to learn and intuitive.

Another important advantage is that users can directly see the results of their work—
the defined quiz. Although a preview of the result can be integrated into other types of
editors as well, this is partially an inherent property of some form-based editors in specific
domains. Particularly in our domain, a graphical user interface used to produce the quiz
can seamlessly resemble the GUI that the quiz-taker will utilize, which had an advantage
in Google Forms.

One subject compared the selection between a form-based and a text (or projectional)
editor to the selection between Microsoft Word and LaTeX for thesis writing. Form-based
GUIs are easier to learn for non-programmers, while textual interfaces manifest their
advantages over long-time usage when the user becomes more comfortable with the
notation and starts using advanced language features.

As a disadvantage of Google Forms, some users mentioned the need to “click through”
the interface. The need to use a mouse for selecting options and switching forms is less
efficient for larger quizzes.

5. Threats to Validity

Now, we describe the threats to the validity of the performed study, using the guide-
lines by Wohlin et al. [12].

5.1. Construct Validity

The study consisted of two separate experiments using within-subject design. Instead
of this, we could perform a single experiment with between-subject design. This would
increase the number of participants assigned to the Xtext and MPS groups, thus increasing
the probability of obtaining statistically significant results. On the other hand, by offering
each participant two different editors, we increased the validity of the survey, since the
participants answered the questions immediately after the completion of the same tasks in
both editors.

In the quantitative survey rating the simplicity of the individual aspects of each editor,
we offered the participants a five-point Likert scale. A vast majority of answers was 1 (very
simple) or 2 (simple), while none of the participants selected 5 (very difficult) in any of
the questions. Offering a more fine-grained Likert scale or asking more specific questions
could improve the diversity of the results. On the other hand, even from the current survey,
we can see that the form-based editor received a slightly worse rating for some aspects.

5.2. Internal Validity

Since we used a within-subject design, and each participant performed the same tasks
on the same language with two different editors, the learning effect was certainly present.
However, we mitigated its negative influence on validity by using counter-balancing: we
alternated the order of the editors used by the subjects.

Due to the COVID-19 pandemic, the experiment had to be performed remotely. This
could affect the performance of the participants. However, we supplied them with all
the necessary materials to perform the tasks successfully. Screen recording could cause

Appl. Sci. 2022, 12, 9893 12 of 16

the Hawthorne effect, i.e., change the behavior of the participants because of observation.
Nevertheless, it allowed us to ensure the execution was performed according to the protocol
and was not randomly interrupted.

5.3. External Validity

All participants of the study were computer science students enrolled in an elective
course focused on metaprogramming. This means they had prior programming experience
and therefore might prefer advanced editors offering richer keyboard interaction (text
or projectional editors) to simple graphical user interfaces (form-based editors). In the
future, it would be interesting to perform a similar study with subjects without any prior
programming experience and compare the results.

The tasks used in the study were relatively simple. This could be perceived as an
advantage since it allowed the subjects to complete them without difficulties, and we could
measure solely completion times instead of considering also success rates. On the other
hand, more difficult tasks could make the differences between the individual editors more
prominent.

5.4. Reliability

By performing the experiment online using pre-supplied materials, we practically
eliminated the influence of the researchers on participants.

All materials, including the tutorials, task definitions, language source code, raw
results, and processing scripts are permanently available to the public at https://doi.org/
10.17605/OSF.IO/RWSP6 (accessed on 12 August 2022).

5.5. Conclusion Validity

We did not observe large differences between the groups in the controlled experiment,
and the results were not statistically significant. However, the publication of negative
results is considered a very important aspect to avoid bias [13].

Furthermore, we complemented the experiment with a survey that provided both
quantitative results and valuable qualitative explanations as to why each of the editors was
considered better or worse by the participants.

6. Related Work

The design and development of a domain-specific language is a well-researched
topic [14]. Most of the research, however, has focused on the textual or graphical notations
of DSLs. With the introduction of language workbenches with projectional editors, such
as Intentional software [15] and JetBrains MPS, projectional editors have become a viable
alternative.

Projectional editors have been used in a wide range of languages, including a complex
general-purpose language—extensions of the C language for embedded software develop-
ment [16]. They have also been used as an alternative to form-based user interfaces. For
example, JetBrains MPS was used to develop an interface for biological data analysis [17]
or software requirements modeling [18].

The use of form-based editors as an alternative to a textual DSL has been demonstrated,
for example, for a security policy specification language [19]. IIS*Case tool [20,21] is
using a combination of form-based, graphical, and textual languages for model-driven
development of information systems. Some DSL development tools also support form-
based editors, including Melanee [22] and EMF Forms [23].

Despite the collected experience, empirical evaluation and comparison of different
types of editors are still limited. This is related to the overall lack of empirical evaluation in
DSL research [24].

There are several studies comparing domain-specific to general-purpose languages.
For example, Kosar et al. [25] conducted an experiment where they compared domain-
specific and general-purpose languages for the task of graphical user interface definition.

https://doi.org/10.17605/OSF.IO/RWSP6
https://doi.org/10.17605/OSF.IO/RWSP6

Appl. Sci. 2022, 12, 9893 13 of 16

Participants of the experiments were given tests examining their ability to learn the used
notation and understand the meaning of a program and modify it. The success rate of
program comprehension was better in the case of DSL. Deeper analysis based on a cognitive
dimensions framework showed that DSL was superior in all cognitive dimensions.

In the follow-up study, Kosar et al. [26] used three different domains: feature modeling,
graph description, and graphical user interfaces. They again found that the correctness
of answers to test questions was significantly higher in the case of DSL compared to a
general-purpose language. Participants also needed less time to complete the tests; thus,
the efficiency of program comprehension was also significantly higher in the case of DSL.

They, however, intentionally excluded the influence of editors on the results in both of
the experiments. For this reason, the tests were taken on paper, so no software support tools
or specific editors were used. All languages used in the experiment had textual notation.

Barišić et al. [27] also compared DSL to a general-purpose language. It was a graphical
DSL for the domain of High Energy Physics on the one hand, and C++ on the other hand.
The effectiveness, efficiency, and confidence of the users were significantly better in the
case of the DSL, but it was not clear how much the results were influenced by the editor of
the language.

Another similar study was conducted by Johanson and Hasselbring [28]. They used
the domain of marine ecosystem simulation, and the participants were domain experts—
ecologists. The compared languages were Sprat Ecosystem DSL and C++. They found
significant improvement in correctness and time needed to complete the tasks using the
DSL. As an editor, however, they used a simple, web-based text editing component with
syntax highlighting for both languages.

Nosál’ et al. [10] investigated the influence of IDE features on the use of embedded
DSLs. They compared a DSL based on the Ruby language, known for flexible syntax with
a minimum of syntactic noise, with a DSL based on Java with more strict syntax. The
Java-based language, however, used several IDE features to improve the editing experience,
including generating the boilerplate code, hiding fragments of the code with syntactic noise
and preventing their editing, code completion, and custom error reporting. Both languages
were tested on non-programmers. As a result, the users with the Java-based language
with the customized IDE achieved significantly better correctness than the users with the
Ruby-based language and a standard IDE. This shows that the editor features were able to
overcome the advantages of the flexible syntax of Ruby.

The difference between projectional and parser-based editors was measured in an
experiment by Berger et al. [29]. It compared the editing of C programs in the projectional
editor based on JetBrains MPS and in the parser-based editor Eclipse CDT. The results
showed that for basic editing, a projectional editor provides comparable efficiency to the
parser-based editor. In more advanced tasks, such as refactoring, the projectional editor
is more limiting. They focused on a general-purpose programming language instead of a
DSL. For this reason, it did not make sense to compare it with a form-based editor.

Lopes et al. [30] performed an experiment comparing graphical and textual DSLs for
conceptual database modeling. In their case, they did not find a significant difference in the
time needed to perform tasks and effectiveness.

There are also studies focused on a specific feature of code editors. For example,
Hannebauer et al. [31] evaluated the influence of syntax highlighting on program com-
prehension by novice programmers. They found no evidence that syntax highlighting
improves the correctness of code comprehension tasks.

7. Conclusions and Future Work

We presented an empirical study comparing three different editors of the same domain-
specific language: an advanced plain-text editor implemented in the Xtext framework, a
projectional editor developed using JetBrains MPS, and a form-based GUI editor, namely
Google Forms. The topic of the DSL was the definition of quizzes.

Appl. Sci. 2022, 12, 9893 14 of 16

The study consisted of a controlled experiment with human subjects divided into
two groups (Xtext vs. Google Forms and MPS vs. Google Forms) and an accompanying
survey. The task of the participants was to perform small changes to existing questions,
add elements to an existing question, and add a new question. We measured the time spent
on the tasks.

In the controlled experiment, the measured time for Xtext was marginally lower than
for Google Forms (2.4% difference in median times, 11.4% difference in mean times), and
Google Forms had a slightly lower measured time than MPS (3.8% medians, 14.5% means).
However, the results were statistically insignificant, so we cannot conclude which editor
type achieved the best efficiency. We attribute the smallness of the differences mainly to the
programming expertise of the participants combined with a simple DSL.

In the quantitative survey, questions focused on the ease of specific aspects of editing;
the participants rated all editors rather favorably. A small exception was Google Forms,
which some subjects considered not so easy for question parameter addition. When asked
about which editor they would prefer in the future, the majority of subjects selected Xtext
or MPS, with Google Forms being less popular.

The higher preference for MPS over Google Forms seems to contradict the efficiency
results. Such disparity between objective and subjective evaluation has already been
observed in other works [32]. In our case, the survey question was about their future
preference, so the respondents might have been trying to predict their efficiency in long-
term usage. This assumption is also supported by some of their answers in the qualitative
survey. On the other hand, it may have just been their personal preferences.

We also obtained interesting qualitative data. Xtext and MPS were praised for their
efficient, mouse-free interaction. In Xtext, the possibility to copy, paste, and synchronize
plain-text data easily during collaboration, and the “feeling of control” were highlighted.
MPS created a controversy, with a portion of the subjects being satisfied with its keyboard
controls and other participants demanding the support of all traditional keyboard shortcuts
known from plain-text editors. Special domain-specific shortcuts were also suggested.
Google Forms was considered easy to learn and use for non-programmers. It relieved the
users of the necessity to learn and remember syntax elements, but many participants would
prefer a text-based editor in a longer time frame.

It is important to note that we consider this study only the first in a potential series
of experiments. Multiple differentiated replications should be performed in the future.
Possible variations include slightly modified language definitions or completely diverse
domains, more difficult tasks, and measurement of other variables. Different variations and
implementations of individual editor types might be tested, too, e.g., a text editor without
advanced syntax highlighting and code completion. Using domain experts without any
prior programming experience would be particularly interesting, since we hypothesize
that their preferences differ from those of programmers to a great extent. Furthermore, this
would mitigate the possible influence of prior Eclipse or MPS experience on the results.
Another potential area of investigation is the long-term usage of the editors, because users’
efficiency with some types of editors might change with growing experience.

Author Contributions: Conceptualization, J.P.; methodology, S.C., M.S., M.K. and J.P.; software, S.C.
and M.K.; validation, M.S. and M.K.; formal analysis, M.S. and M.K.; investigation, M.K.; resources,
S.C.; data curation, S.C., M.S. and M.K.; writing—original draft preparation, S.C., M.S. and M.K.;
writing—review and editing, S.C., M.S. and J.P.; visualization, S.C. and M.S.; supervision, S.C.;
funding acquisition, J.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by VEGA grant no. 1/0630/22, Lowering Programmers’ Cogni-
tive Load Using Context-Dependent Dialogs.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are openly available at https://doi.
org/10.17605/OSF.IO/RWSP6 (accessed on 12 August 2022).

https://doi.org/10.17605/OSF.IO/RWSP6
https://doi.org/10.17605/OSF.IO/RWSP6

Appl. Sci. 2022, 12, 9893 15 of 16

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Voelter, M. Best practices for DSLs and model-driven development. J. Object Technol. 2009, 8, 79–102.
2. Sulír, M.; Bačíková, M.; Chodarev, S.; Porubän, J. Visual augmentation of source code editors: A systematic mapping study. J. Vis.

Lang. Comput. 2018, 49, 46–59. [CrossRef]
3. Sulír, M.; Porubän, J. Augmenting Source Code Lines with Sample Variable Values. In Proceedings of the 26th Conference on

Program Comprehension, Association for Computing Machinery, ICPC’18, New York, NY, USA, 28–29 May 2018; pp. 344–347.
[CrossRef]

4. Voelter, M.; Siegmund, J.; Berger, T.; Kolb, B. Towards User-Friendly Projectional Editors. In Software Language Engineering;
Lecture Notes in Computer Science; Combemale, B., Pearce, D., Barais, O., Vinju, J., Eds.; Springer International Publishing:
Berlin/Heidelberg, Germany, 2014; Volume 8706, pp. 41–61. [CrossRef]

5. Bačíková, M.; Porubän, J.; Lakatoš, D. Defining Domain Language of Graphical User Interfaces. In Proceedings of the 2nd
Symposium on Languages, Applications and Technologies, Porto, Portugal, 20–21 June 2013; OpenAccess Series in Informatics
(OASIcs); Leal, J.P., Rocha, R., Simões, A., Eds.; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik: Dagstuhl, Germany, 2013;
Volume 29, pp. 187–202. [CrossRef]

6. Zdun, U.; Strembeck, M. Reusable Architectural Decisions for DSL Design. In Proceedings of the 14th European Conference on
Pattern Languages of Programs (EuroPLoP), Irsee, Germany, 8–12 July 2009; pp. 1–37.

7. Erdweg, S.; Storm, T.; Völter, M.; Boersma, M.; Bosman, R.; Cook, W.; Gerritsen, A.; Hulshout, A.; Kelly, S.; Loh, A.; et al. The State
of the Art in Language Workbenches. In Software Language Engineering; Lecture Notes in Computer Science; Springer International
Publishing: Berlin/Heidelberg, Germany, 2013; Volume 8225, pp. 197–217. [CrossRef]

8. Eysholdt, M.; Behrens, H. Xtext - Implement your Language Faster than the Quick and Dirty way. In Proceedings of the ACM
International Conference Companion on Object-oriented Programming, Systems, Languages, and Applications—SPLASH’10,
Reno, NV, USA, 17–21 October 2010; ACM Press: New York, NY, USA, 2010; p. 307. [CrossRef]

9. Guéhéneuc, Y.G.; Khomh, F. Empirical Software Engineering. In Handbook of Software Engineering; Springer International
Publishing: Cham, Switzerland, 2019; pp. 285–320. [CrossRef]

10. Nosál’, M.; Porubän, J.; Sulír, M. Customizing Host IDE for Non-programming Users of Pure Embedded DSLs: A Case Study.
Comput. Lang. Syst. Struct. 2017, 49, 101–118. [CrossRef]

11. Kleppmann, M.; Wiggins, A.; van Hardenberg, P.; McGranaghan, M. Local-First Software: You Own Your Data, in Spite of the
Cloud. In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2019, Athens, Greece, 23–24 October 2019; Association for Computing Machinery: New
York, NY, USA, 2019; pp. 154–178. [CrossRef]

12. Wohlin, C.; Runeson, P.; Höst, M.; Ohlsson, M.C.; Regnell, B.; Wesslén, A. Experimentation in Software Engineering; Springer:
Berlin/Heidelberg, Germany, 2012.

13. Romano, S.; Fucci, D.; Scanniello, G.; Teresa Baldassarre, M.; Turhan, B.; Juristo, N. Researcher Bias in Software Engineering
Experiments: A Qualitative Investigation. In Proceedings of the 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), Portorož, Slovenia, 26–28 August 2020; pp. 276–283. [CrossRef]

14. Mernik, M.; Heering, J.; Sloane, A.M. When and how to develop domain-specific languages. ACM Comput. Surv. 2005, 37,
316–344. [CrossRef]

15. Simonyi, C.; Christerson, M.; Clifford, S. Intentional software. In Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, Portland, OR, USA, 22–26 October 2006; pp. 451–464.

16. Voelter, M.; Kolb, B.; Szabó, T.; Ratiu, D.; van Deursen, A. Lessons learned from developing mbeddr: A case study in language
engineering with MPS. Softw. Syst. Model. 2019, 18, 585–630. [CrossRef]

17. Benson, V.M.; Campagne, F. Language workbench user interfaces for data analysis. PeerJ 2015, 3, e800. [CrossRef] [PubMed]
18. Savić, D.; Vlajić, S.; Lazarević, S.; Antović, I.; Stanojević, V.; Milić, M.; Silva, A. SilabMDD: A use case model driven approach.

In Proceedings of the ICIST 2015 5th International Conference on Information Society and Technology, Kopaonik, Serbia, 8–10
March 2015.

19. Harnoš, P.; Dedera, L. Analysis of current trends in the development of DSLs and the possibility of using them in the field of
information security. Sci. Mil. J. 2021, 16, 15–27. [CrossRef]

20. Luković, I.; Mogin, P.; Pavićević, J.; Ristić, S. An approach to developing complex database schemas using form types. Softw.
Pract. Exp. 2007, 37, 1621–1656. [CrossRef]

21. Luković, I.; Pereira, V.J.M.; Oliveira, N.; Henriques, R.P. A DSL for PIM specifications: Design and attribute grammar based
implementation. Comput. Sci. Inf. Syst. 2011, 8, 379–403. [CrossRef]

22. Atkinson, C.; Gerbig, R. Flexible deep modeling with Melanee. In Proceedings of the Modellierung 2016 Workshopband,
Karlsruhe, Germany, 2–4 March 2016; Gesellschaft für Informatik eV: Bonn, Germany, 2016; pp. 117–121.

23. Jafer, S.; Chhaya, B.; Durak, U. Graphical specification of flight scenarios with aviation scenario defintion language (ASDL). In
Proceedings of the AIAA Modeling and Simulation Technologies Conference, Grapevine, TX, USA, 9–13 January 2017; p. 1311.

http://doi.org/10.1016/j.jvlc.2018.10.001
http://dx.doi.org/10.1145/3196321.3196364
http://dx.doi.org/10.1007/978-3-319-11245-9_3
http://dx.doi.org/10.4230/OASIcs.SLATE.2013.187
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1145/1869542.1869625
http://dx.doi.org/10.1007/978-3-030-00262-6_7
http://dx.doi.org/10.1016/j.cl.2017.04.003
http://dx.doi.org/10.1145/3359591.3359737
http://dx.doi.org/10.1109/SEAA51224.2020.00054
http://dx.doi.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/s10270-016-0575-4
http://dx.doi.org/10.7717/peerj.800
http://www.ncbi.nlm.nih.gov/pubmed/25755929
http://dx.doi.org/10.52651/sam.a.2021.2.15-27
http://dx.doi.org/10.1002/spe.820
http://dx.doi.org/10.2298/CSIS101229018L

Appl. Sci. 2022, 12, 9893 16 of 16

24. Kosar, T.; Bohra, S.; Mernik, M. Domain-Specific Languages: A Systematic Mapping Study. Inf. Softw. Technol. 2016, 71, 77–91.
[CrossRef]

25. Kosar, T.; Oliveira, N.; Mernik, M.; Pereira, V.J.M.; Črepinšek, M.; Da Cruz, D.; Henriques, R.P. Comparing General-Purpose and
Domain-Specific Languages: An Empirical Study. Comput. Sci. Inf. Syst. ComSIS 2010, 7, 247–264. [CrossRef]

26. Kosar, T.; Mernik, M.; Carver, J.C. Program comprehension of domain-specific and general-purpose languages: Comparison
using a family of experiments. Empir. Softw. Eng. 2012, 17, 276–304. [CrossRef]

27. Barišić, A.; Amaral, V.; Goulão, M.; Barroca, B. Quality in Use of Domain-Specific Languages: A Case Study. In Proceedings of
the 3rd ACM SIGPLAN Workshop on Evaluation and Usability of Programming Languages and Tools—PLATEAU’11, Portland,
OR, USA, 24 October 2011; ACM: New York, NY, USA, 2011; p. 65. [CrossRef]

28. Johanson, A.N.; Hasselbring, W. Effectiveness and efficiency of a domain-specific language for high-performance marine
ecosystem simulation: A controlled experiment. Empir. Softw. Eng. 2017, 22, 2206–2236. [CrossRef]

29. Berger, T.; Völter, M.; Jensen, H.P.; Dangprasert, T.; Siegmund, J. Efficiency of projectional editing: A controlled experiment.
In Proceedings of the International Symposium on Foundations of Software Engineering—FSE 2016, Seattle, WA, USA, 13–18
November 2016; ACM Press: New York, NY, USA, 2016; pp. 763–774. [CrossRef]

30. Lopes, J.; Bernardino, M.; Basso, F.; Rodrigues, E. Textual-based DSL for Conceptual Database Modeling: A Controlled Experiment.
In Proceedings of the Anais do XXXVI Simpósio Brasileiro de Banco de Dados (SBBD 2021), Rio de Janeiro, Brazil, 4–8 October
2021; Sociedade Brasileira de Computação—SBC: Porto Alegre, Brazil, 2021; pp. 169–180. [CrossRef]

31. Hannebauer, C.; Hesenius, M.; Gruhn, V. Does syntax highlighting help programming novices? Empir. Softw. Eng. 2018,
23, 2795–2828. [CrossRef]

32. Fabry, J. The Meager Validation of Live Programming. In Proceedings of the Conference Companion of the 3rd International
Conference on Art, Science, and Engineering of Programming, Association for Computing Machinery, Programming’19, Genova,
Italy, 1–4 April 2019. [CrossRef]

http://dx.doi.org/10.1016/j.infsof.2015.11.001
http://dx.doi.org/10.2298/CSIS1002247K
http://dx.doi.org/10.1007/s10664-011-9172-x
http://dx.doi.org/10.1145/2089155.2089170
http://dx.doi.org/10.1007/s10664-016-9483-z
http://dx.doi.org/10.1145/2950290.2950315
http://dx.doi.org/10.5753/sbbd.2021.17875
http://dx.doi.org/10.1007/s10664-017-9579-0
http://dx.doi.org/10.1145/3328433.3328457

	Introduction
	Language and Editors
	Form-Based Editor
	Advanced Text Editor
	Projectional Editor

	Method
	Hypotheses
	Variables
	Experiment Design
	Tasks
	Survey
	Participants
	Setup
	Procedure
	Data Collection
	Statistical Analysis

	Results
	Controlled Experiment
	Quantitative Survey Results
	Qualitative Survey Results
	Text Editor
	Projectional Editor
	Form-Based Editor

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability
	Conclusion Validity

	Related Work
	Conclusions and Future Work
	References

