
Program Comprehension: A Short Literature Review
Matúš Sulír

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice, Slovakia

matus.sulir@tuke.sk

Abstract—Program comprehension is a study of how pro-
grammers understand existing programs. First, we delineate the
research field and provide a brief overview of program compre-
hension theories. Then we present a literature review of program
comprehension study results, techniques and tools – from overall
comprehension through feature location to understanding the
details and rationale behind the source code. Finally, future
research directions are suggested.

Keywords—debugging, feature location, mental model, pro-
gram comprehension

I. INTRODUCTION

According to Biggerstaff et al. [1], a person comprehends
a program if one understands its structure, behavior and
connection to the application domain. We can say that program
comprehension describes how developers understand existing
programs (whether or not written by themselves) in order to
improve their functional or non-functional qualities.

A. Research Field Definition

To delineate the research field, let us put program com-
prehension in the context of a software development process
(Fig. 1). As a developer reads the specification, a mental model
forms in his or her head. A mental model is defined as a
representation of a program in the programmer’s mind [2].
This model is refined until the developer is able to implement
parts of the application and create manually produced artifacts
– traditionally the source code. The code is compiled, produc-
ing generated artifacts like a runnable application. To com-
prehend the program, the developer inspects the source code
and debugs the produced application. This further refines the
mental model and the development continues. Occasionally,
the specification must be adapted because not all requirements
were implemented in a desired way.

It is important to note that the order of the mentioned
processes is not fixed and they often interleave or are per-
formed in parallel. In many cases the programmer starts to
familiarize with the program by inspecting generated artifacts
– the running application. Finally, the diagram depicts only one
specific developer’s perspective and does not consider team
aspects of software engineering.

B. Related Fields

Two most related research fields are software maintenance
and reverse engineering. Maintenance is a much broader term
which encompasses practically a whole software development
process since it is difficult to distinguish between software
creation and software modification.

The terms program comprehension and reverse engineering
are often used interchangeably, although there is a slight
difference. Reverse engineering focuses on techniques and
tools for creation of higher-level abstraction documents from
lower-level ones. Program comprehension research is also
interested in the effect of using these tools. Therefore, reverse
engineering techniques aid developers in program comprehen-
sion [3].

II. THEORIES AND METHODS

A cognitive model, also called a comprehension model, is a
theory describing psychological processes involved in program
comprehension which help to construct the mental model of
a program [2]. There are multiple cognitive models described
by researchers. Generally, we can divide them into top-down
and bottom-up approaches.

Top-down program comprehension starts with the pro-
grammer’s problem domain knowledge. The person forms
hypotheses about the program and accepts or rejects them by
inspecting the source code and other artifacts. The hypotheses
are gradually refined into sub-hypotheses [4]. This type of
comprehension is typically used when the program is familiar
[5]. An example of a top-down cognitive model is the Brooks
model [4].

Bottom-up comprehension is characterized by reading the
source code line by line and incrementally grouping them
to form higher-level abstractions [2]. An example is the
Pennington model [6].

The fact that there are at least seven, relatively complex
comprehension models described in literature (six in a review

specification

mental model

design

implement

manually produced
artifacts

generated
artifacts

generate

comprehend comprehend

adapt

Fig. 1. Program comprehension in the context of a software development
process. Solid arrows represent manual, human-performed processes; dashed
arrows are automatic, computer-performed operations. The research area of
program comprehension is marked in boldface.



[5] and one recent [7]) suggests us an idea that this number
is not finite. Each person’s cognition is quite different and
it depends on a specific situation. It is therefore difficult to
generalize the theories and design useful program comprehen-
sion tools directly after them. For this reason, many studies
and experiments have been conducted in the field of program
comprehension.

III. STATE OF THE ART

We will now explore the process of program comprehension
from the most high-level perspective to detailed inspection,
providing an overview of relevant techniques and tools avail-
able along with problems developers encounter.

A. Overall Comprehension

Architecture comprehension tools visualize the overall
structure of a software system, its components and their rela-
tionship. Polymetric view tools like CodeCrawler [8] display
code entities as nodes, relations between them as edges and
arbitrary metrics as node shape attributes. For example, classes
are displayed as rectangles with the width proportional to the
method count and the height proportional to the line count.
A disadvantage of such tools is the fact they usually focus
just on simple quantitative metrics and perform only a static
analysis of source code.

Metaphor-based visualizations transform code entities to
2D or 3D objects known from real life. For example, the
famous city metaphor displays classes as buildings – like
in the EvoSpaces tool [9]. An industrial application of such
visualizations is questionable. A more promising approach is
offered by ExplorViz [10], which combines them with so-
called landscape view – a mixture of UML deployment and
activity diagram produced by analyzing execution traces.

Domain analysis tools can be helpful for a new team
member to become familiar with the system. The DEAL
method [11] extracts a domain model from the GUI (graphical
user interface) of a running application. However, manual user
interaction is necessary and the method focuses only on a static
structure of programs like relations between forms and their
controls.

To gain the overview of domain knowledge contained in
a program, it is possible to map program identifiers to an
ontological dictionary like WordNet using subgraph homomor-
phism [12]. However, the approach is only semi-automatic and
it is necessary to adjust the results manually. This is a result of
representational defects like polysemy where one identifier in
a program can represent multiple real-world concepts. Some
types of defects can be detected and repaired, but the other
are inherent to the nature of relationship between programs
written in current general-purpose languages (GPLs) and the
real world [13].

B. Location of Parts

As software becomes more complicated, it is impossible
for a programmer to understand it whole. Therefore partial, or
as-needed comprehension is necessary [14].

Each software consists of problem concepts and features
(like a shopping cart or shipping method selection) and so-
lution features (e.g., a web presentation and database per-
sistence). One problem domain feature is scattered across

multiple solution features. This is called feature delocalization
[15]. One of the key objectives of program comprehension is
to tackle this phenomenon which impedes code navigation by
using feature location (or concept location) tools.

Textual code search is a common feature location approach.
To find syntactical patterns, programmers often use compli-
cated regular expressions and the results are unsatisfactory as
programming languages are rarely regular. An AST (abstract
syntax tree) querying is more viable. By using an intuitive
“query-by-example” language [16], developers can search an
AST without realizing it. However, the approach is not usable
for more complicated patterns.

The MuTT tool [17] implements feature location by ex-
ecution trace collection. While debugging the program, just
before utilizing the feature of interest like adding an item to
the shopping cart, the programmer clicks a button in the tool to
start collecting the trace. After performing the desired action,
the button is clicked again. A list of all methods executed
between the two clicks is displayed in an IDE (integrated
development editor). It must be manually filtered since it
probably contains many auxiliary methods, not related to the
tracked feature. Furthermore, to find multiple features, it is
necessary to manually repeat the mentioned actions for each
of them. The possibility of automation should be investigated.

After the features are located, it is desirable to mark their
occurrences in the source code to avoid duplicate work in
the future. This activity is called code labeling or concern
tagging. In the previous example, we would mark all found
methods with a tag “add to cart”. An academic tool FLAT3

[18] combines:
• full-text code search,
• feature location by execution trace collection using the

MuTT tool,
• feature labeling with method-level granularity,
• and visualization of feature distribution across the source

code files.
An another approach for feature location is differential code

coverage [19]. If we run a program first selecting a feature of
interest and then not, the difference of code coverage should
be the source code of the feature. This approach suffers from
similar limitations as execution trace collection.

It would be useful to combine execution trace collection
of the MuTT tool with differential code coverage and assess
the effectiveness of such approach. Furthermore, as bugs
can be considered a kind of features (unwanted, of course),
bug localization is a specific kind of feature localization.
Differential code coverage could be used to localize the faults,
too.

An interesting feature location tool is included directly in
the core of an industrial IDE, NetBeans. During the runtime,
it is possible to take so-called GUI Snapshot of the debugged
program user interface and inspect the events to be performed
after e.g., clicking a button or selecting a combo-box item.

C. Understanding the Details

The Theseus tool [20] shows how many times a particular
method has been called during a web application execution.
These numbers are displayed directly in the code editor and
in real time. By clicking a given method, a retroactive log
containing the argument values for each execution is shown.
This allows for feature location along with a more thorough



inspection of the program behavior. A similar tool [21], but
for desktop Java applications, operates on individual source
code lines instead of methods and thus focuses on detailed
algorithm analysis.

Many difficult comprehension questions developers ask
when debugging can be answered by asking reachability
questions. A reachability question involves searching for all
possible execution paths to find source code statements match-
ing the given criteria [22]. However, developers’ questions are
often vague and difficult to formulate in mathematical terms.
The overhead used to formulate such queries can exceed the
benefits they provide.

As developers inspect the source code and associated ar-
tifacts using various techniques, they create mental models
of the code which contain information far behind what is
explicitly written. Despite there is a high demand for this
implicit knowledge [23], it is not explicitly captured [24] or
it is captured only in transient notes, not persisted across
sessions [23]. One possible cause is that each developer’s
mental model is different and thus the personal notes created
by one developer are not useful for an another one. This
hypothesis should be tested by further research.

One form of temporary knowledge saving is the use of book-
marks in an IDE. To share such personal findings, collective
bookmarks [25] can be used. In the study, they were found
useful for marking the lines where to start with a given type
of task, but not for detailed explanations.

D. Investigating the Rationale

Even if the code is thoroughly understood, programmers
often ask why it was implemented this way [24]. One of
the manually produced artifacts in Fig. 1 are version control
system commits. Commit messages may contain invaluable
information about intentions behind the source code.

Surprisingly, less developers actually read commit messages
than write them [23]. A possible cause is that IDEs do not
present them conveniently. Plugins like Deep Intellisense or
Rationalizer [26] try to overcome this issue by displaying
history information relevant to a given piece of code.

For version control analysis tools to be successful, each
commit must contain code related to only one task. This is
often not true in reality. A technique [27] can detect tangled
changes before they are committed and suggest how they
could be untangled. The disadvantage is a high ratio of false
positives.

E. Making Programs Comprehensible

While analyzing existing software is useful, we must also
learn lessons from it and design new systems to be more
comprehensible.

There is an ongoing effort to create an intuitive program-
ming language Quorum [28], designed after the results of
empirical studies. However, it focuses too much on syntax
of constructions (e.g., repeat instead of for) and copies the
high-level design of semantics from the Java language.

Identifier naming is a significant factor of program compre-
hension. Method names can be evaluated for comprehensibility
and more intuitive names can be suggested, using a database
of commonly used n-grams [29].

Instead of using feature location approaches with often
unsatisfactory results, there is a possibility to label classes

and methods by their associated concerns using source code
annotations immediately when writing the code. Then, source
code projections [30] can be used to show classes and methods
associated with a given concern in an IDE. While projections
are perceived as useful, labeling the code manually is a time-
consuming activity which does not directly affect the resulting
program execution. Therefore, we can expect programmers to
skip labeling or leave the annotations out of sync with the rest
of the code, just as it often happens with comments.

Much work is done in the area of code clone detection and
removal since there is a widespread opinion that duplicated
code negatively affects comprehension. Surprisingly, a study
[31] found out that fixing bugs affecting cloned code do not
require more effort than fixing other bugs. Code with high
regularity, which may be a result of cloning, is more easily
comprehended by developers [32]. Furthermore, developers
perceive code duplication in a broader sense than simple copy-
pasting – for example, implementing the same method in
multiple languages or in multiple version control branches
[24].

IV. FUTURE DIRECTIONS

To design tools meeting the expectations of developers
trying to understand complex systems, we must first perform
experiments to study how they perform program comprehen-
sion using the tools available. Only then we can proceed to
designing new ones. We plan to conduct qualitative studies
designed to reveal the shortcomings of existing program
comprehension approaches in specific contexts, produce hy-
potheses and then continue with quantitative experiments to
accept or reject them.

A. Web and Mobile Applications
The majority of program comprehension studies and ex-

periments are performed on a small or medium-sized project,
usually self-contained and depending only on standard lan-
guage and operating system API (application programming
interface) and a few simple libraries, if any at all. The main
area of interest are WIMP (windows, icons, menus, pointer)
and command-line programs. Academic tools developed upon
the results of these experiments are therefore usable only for
projects subject to these limitations.

Nowadays, software projects are built using large frame-
works. Systems have an immense number of dependencies and
their behavior often depends on results of asynchronous calls
to remote servers. They consist of multiple layers and having
a web or mobile interface becomes a standard. Studying the
comprehension of these systems is a promising research area.

B. Build Process Comprehension
Compilation and deployment processes of contemporary

programs are sometimes more complex than the programs
themselves. Especially when using generative programming
and model-driven software development, it is important to
know:

• what languages, frameworks, libraries and tools are used
in the system,

• what are the dependencies between them,
• how do these artifacts interact to produce the intermediate

results like object files and executables (if any)
• and how is the system configured to allow for the

successful execution and presentation of results to a user.



C. Obtaining Terms from GUIs

In the source code, programmers are not technically obliged
to use terms from the problem domain to name the identifiers.
On the other hand, GUIs contain information shown directly
to the end user an thus must contain domain terms. Using
techniques like execution trace collection in combination with
GUI ripping [33] could bring the terms back to the source
code and at least partially substitute manual code labeling.

D. Language Composition

Many comprehension studies are performed on a program
written in one general-purpose language. Today, language
composition becomes a common way to construct programs
– projects often use a mixture of severals GPLs and DSLs
(domain-specific languages). The future research should in-
vestigate comprehension factors of using multiple languages
in one program – not only from the syntactic aspect, but also
the differences between individual paradigms and the effects
of frequent switching from one paradigm to an another. It
is important to know which combinations of languages and
paradigms are more intuitive and closer to the mental model
of the majority of programmers.

ACKNOWLEDGMENT

This work was supported by VEGA Grant No. 1/0341/13
Principles and methods of automated abstraction of computer
languages and software development based on the semantic
enrichment caused by communication.

REFERENCES

[1] T. J. Biggerstaff, B. G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” in Proceedings of the
15th International Conference on Software Engineering, ser. ICSE ’93.
Los Alamitos, CA, USA: IEEE Computer Society Press, 1993, pp.
482–498.

[2] M. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop on, May 2005, pp. 181–191.

[3] H. A. Müller and H. M. Kienle, “A small primer on software reverse
engineering,” University of Victoria, Tech. Rep., 2009.

[4] R. Brooks, “Using a behavioral theory of program comprehension
in software engineering,” in Proceedings of the 3rd International
Conference on Software Engineering, ser. ICSE ’78. Piscataway, NJ,
USA: IEEE Press, 1978, pp. 196–201.

[5] A. von Mayrhauser and A. Vans, “Program comprehension during
software maintenance and evolution,” Computer, vol. 28, no. 8, pp. 44–
55, Aug 1995.

[6] N. Pennington, “Stimulus structures and mental representations in
expert comprehension of computer programs,” Cognitive Psychology,
vol. 19, no. 3, pp. 295 – 341, 1987.

[7] J. Belmonte, P. Dugerdil, and A. Agrawal, “A three-layer model of
source code comprehension,” in Proceedings of the 7th India Software
Engineering Conference, ser. ISEC ’14. New York, NY, USA: ACM,
2014, pp. 10:1–10:10.

[8] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “CodeCrawler - an
information visualization tool for program comprehension,” in Software
Engineering, 2005. ICSE 2005. Proceedings. 27th International Confer-
ence on, May 2005, pp. 672–673.

[9] S. Alam and P. Dugerdil, “EvoSpaces visualization tool: Exploring
software architecture in 3D,” in Reverse Engineering, 2007. WCRE 2007.
14th Working Conference on, Oct 2007, pp. 269–270.

[10] F. Fittkau, J. Waller, C. Wulf, and W. Hasselbring, “Live trace visu-
alization for comprehending large software landscapes: The ExplorViz
approach,” in Software Visualization (VISSOFT), 2013 First IEEE Work-
ing Conference on, Sept 2013, pp. 1–4.

[11] M. Bačíková, J. Porubän, and D. Lakatoš, “Defining domain language
of graphical user interfaces,” in 2nd Symposium on Languages,
Applications and Technologies, ser. OpenAccess Series in Informatics
(OASIcs), vol. 29. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2013, pp. 187–202.

[12] D. Ratiu and F. Deissenboeck, “Programs are knowledge bases,” in
Program Comprehension, 2006. ICPC 2006. 14th IEEE International
Conference on, 2006, pp. 79–83.

[13] ——, “From reality to programs and (not quite) back again,” in Program
Comprehension, 2007. ICPC ’07. 15th IEEE International Conference
on, June 2007, pp. 91–102.

[14] V. Rajlich and N. Wilde, “A retrospective view on: The role of concepts
in program comprehension,” in Program Comprehension (ICPC), 2012
IEEE 20th International Conference on, June 2012, pp. 12–13.

[15] J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories:
Assembling Applications with Patterns, Models, Frameworks, and Tools.
John Wiley & Sons, 2004.

[16] O. Panchenko, J. Karstens, H. Plattner, and A. Zeier, “Precise and
scalable querying of syntactical source code patterns using sample code
snippets and a database,” in Program Comprehension (ICPC), 2011
IEEE 19th International Conference on, June 2011, pp. 41–50.

[17] D. Liu and S. Xu, “MuTT: A multi-threaded tracer for Java programs,” in
Computer and Information Science, 2009. ICIS 2009. Eighth IEEE/ACIS
International Conference on, June 2009, pp. 949–954.

[18] T. Savage, M. Revelle, and D. Poshyvanyk, “FLAT3: Feature location
and textual tracing tool,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 2, ser.
ICSE ’10. New York, NY, USA: ACM, 2010, pp. 255–258.

[19] K. D. Sherwood and G. C. Murphy, “Reducing code navigation effort
with differential code coverage,” Department of Computer Science,
University of British Columbia, Tech. Rep., September 2008.

[20] T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the 32nd Annual ACM Conference on Human Factors in Computing
Systems, ser. CHI ’14. New York, NY, USA: ACM, 2014, pp.
2481–2490.

[21] T. Matsumura, T. Ishio, Y. Kashima, and K. Inoue, “Repeatedly-
executed-method viewer for efficient visualization of execution paths
and states in Java,” in Proceedings of the 22nd International Conference
on Program Comprehension, ser. ICPC 2014. New York, NY, USA:
ACM, 2014, pp. 253–257.

[22] T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ser. ICSE ’10. New York, NY,
USA: ACM, 2010, pp. 185–194.

[23] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw. Eng.
Methodol., vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014.

[24] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proceedings of the
28th International Conference on Software Engineering, ser. ICSE ’06.
New York, NY, USA: ACM, 2006, pp. 492–501.

[25] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen,
“Collective code bookmarks for program comprehension,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on,
June 2011, pp. 101–110.

[26] A. W. Bradley and G. C. Murphy, “Supporting software history
exploration,” in Proceedings of the 8th Working Conference on Mining
Software Repositories, ser. MSR ’11. New York, NY, USA: ACM,
2011, pp. 193–202.

[27] H. Kirinuki, Y. Higo, K. Hotta, and S. Kusumoto, “Hey! Are you
committing tangled changes?” in Proceedings of the 22nd International
Conference on Program Comprehension, ser. ICPC 2014. New York,
NY, USA: ACM, 2014, pp. 262–265.

[28] A. Stefik and S. Siebert, “An empirical investigation into programming
language syntax,” Trans. Comput. Educ., vol. 13, no. 4, pp. 19:1–19:40,
Nov. 2013.

[29] T. Suzuki, K. Sakamoto, F. Ishikawa, and S. Honiden, “An approach
for evaluating and suggesting method names using n-gram models,”
in Proceedings of the 22nd International Conference on Program
Comprehension, ser. ICPC 2014. New York, NY, USA: ACM, 2014,
pp. 271–274.

[30] J. Porubän and M. Nosál’, “Leveraging program comprehension with
concern-oriented source code projections,” in 3rd Symposium on Lan-
guages, Applications and Technologies, ser. OpenAccess Series in In-
formatics (OASIcs), vol. 38. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014, pp. 35–50.

[31] F. Rahman, C. Bird, and P. Devanbu, “Clones: what is that smell?”
Empirical Software Engineering, vol. 17, no. 4-5, pp. 503–530, 2012.

[32] A. Jbara and D. G. Feitelson, “On the effect of code regularity on
comprehension,” in Proceedings of the 22nd International Conference
on Program Comprehension, ser. ICPC 2014. New York, NY, USA:
ACM, 2014, pp. 189–200.

[33] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: reverse engi-
neering of graphical user interfaces for testing,” in Reverse Engineering,
2003. WCRE 2003. Proceedings. 10th Working Conference on, Nov
2003, pp. 260–269.


	Introduction
	Research Field Definition
	Related Fields

	Theories and Methods
	State of the Art
	Overall Comprehension
	Location of Parts
	Understanding the Details
	Investigating the Rationale
	Making Programs Comprehensible

	Future Directions
	Web and Mobile Applications
	Build Process Comprehension
	Obtaining Terms from GUIs
	Language Composition

	References

