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Abstract—Concern annotations are source code annotations
over language elements, expressing concerns related to a partic-
ular peace of code. While elements can be annotated manually
by programmers, it is a time-consuming activity. We present an
approach of semi-automatic method annotation using differential
code coverage, focusing on end-user features. We compare the
results of semi-automatic annotation of a sample program with
manually performed annotation. In our preliminary implemen-
tation, we achieve a precision and recall over 40%, identify the
shortcomings and name differences.

I. INTRODUCTION

A. Concerns

Each nontrivial software contains many concerns – pro-
grammer’s intents behind a particular piece of code [1]. For ex-
ample, a diagramming application may contain code related to
on-screen drawing, vector arithmetics, file formats, etc. When
a program is written in a traditional programming language,
these concerns are tangled together. This is unavoidable since
one piece of code can pertain to multiple concerns [1].

B. Features

Some of the concerns are related to the problem domain
and are directly visible to application end users. Such concerns
are usually called features.

Feature location is an act of finding all occurrences of a
particular concern. It is one of the most frequently performed
actions during program maintenance [2]. However, when con-
cerns are not explicitly recorded in the source code, this task
can be onerous.

C. Concern Annotations

For the mentioned reasons, we devised a notion of concern
annotations in [3]. For each concern, a Java annotation type is
created by a programmer. For example, the drawing concern
is represented by an annotation type @Drawing. Subsequently,
each class, member variable and method related to this concern
is marked with this annotation. Marked elements are called
annotation occurrences.

This approach has a major advantage over natural-language
source code comments: All occurrences of a concern can be
unambiguously found using standard IDE (Integrated Devel-
opment Environment) features like Find Usages. Compared

to other code-tagging methods, annotations do not require
any additional plugins as they are a core feature of the Java
language (and present also in other languages, e.g., as C#
attributes [4]).

Concern annotations can be parametrized, e.g.,
@Drawing(target=Target.SCREEN). However, for the
purpose of automatic concern tagging, we will only consider
annotations without parameters.

There are three types of concern annotations [3]:

• domain annotations (concepts related to the problem
domain), e.g. “searching students”,

• design annotations – usually instances of design pat-
terns and other implementation decisions,

• maintenance annotations like @TODO("finish
later").

In this paper, we are interested only in domain annotations
as they present program features visible to the end user.

D. Differential Code Coverage

Differential code coverage [5] is based on an idea of
running an application two times – first with a particular
feature utilized, second time without this feature – while
collecting sets of executed methods. By subtracting the second
set from the first one, we should get a set of methods specific
to the given feature.

E. Hypothesis

In this article, we present the first draft of a method for
semi-automatic annotation using differential code coverage.
We assess its usefulness and try to list some of its drawbacks.

Our main hypothesis is: A semi-automatic approach of
concern annotation using differential code coverage is a suit-
able replacement for manually performed concern annotation.

We have broken the hypothesis into three smaller research
questions:

• RQ1: Is it feasible to use differential code coverage
to annotate methods in the source code with concern
annotations?
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Fig. 1. Annotation process for a specific concern. Solid arrows represent
automated processes, dashed partially manual ones.

• RQ2: To what extent do automatically created annota-
tions overlap with manually created ones for the same
project?

• RQ3: What are the main reasons of differences be-
tween semi-automatic and manual annotation?

II. SEMI-AUTOMATIC CONCERN TAGGING

An overview of the whole process for one specific concern
is in Fig. 1. The process can be also run with a list of multiple
concern names supplied. In this case, the AutoAnnot part is
repeated for each concern.

A. Creating Annotation Types

First, the programmers must create an annotation type for
each concern they recognize in a program. This process is not
automated and remains the same as in our previous work.

B. Differential Code Coverage

In this section, we will apply the idea of differential code
coverage [5] to determine a set of methods pertaining to a
particular concern and designated to be annotated with the
given annotation type.

1) Instrumentation: The program is augmented so that
execution traces are collected when it is run. We used BTrace1.
It was run as a Java agent – a program which can instrument
the bytecode at runtime. BTrace uses a file with Java-like
syntax, specifying which actions should be performed e.g. on
each method call.

We configured BTrace to log a fully-qualified name of each
called method to a file. A fully-qualified name unambiguously
identifies the method – it includes a package and class name,
method name and parameters types. Each method is included
only once in a log file, even if it is called multiple times. We
also included constructors in the logs.

1http://kenai.com/projects/btrace

2) Execution: For each concern, a user executes the pro-
gram two times:

• once with the particular concern utilized – a concern-
related run

• and once in a manner when the concern is not utilized
– a concern-unrelated run.

For example, if the concern of interest is “file saving”, the
user first creates a simple drawing in an application and saves
it to a file; in the second run (s)he creates the drawing again
but discards the changes.

We now have two log files for a particular concern – one
containing the methods from the first run, one from the second.

3) Subtraction: Let us call the set of methods executed for
concern c during the first run M1(c), during the second one
M2(c). Then the set of methods most specific to the concern
c is:

M(c) = M1(c)−M2(c)

This way, only methods specific to a particular concern are
included in the result, leaving out utility methods and methods
common to multiple concerns.

C. Writing Annotations

Once a set of methods corresponding to a particular con-
cern is computed, each of these methods is annotated. The
original source code is parsed, modified and written back using
the Roaster library2.

There was a problem with Java’s anonymous classes –
mapping from the class during runtime to a class in the source
code was ambiguous. For this reason, we chose not to annotate
methods inside anonymous classes.

III. COMPARISON WITH MANUAL TAGGING

In this section, we will investigate how are results of semi-
automatic concern annotation similar to human-performed
annotation and how they are different.

A. Method

1) Materials: We performed this study on EasyNotes3 –
a 2500 LOC (lines of code) desktop Java application for
bibliographic note-taking.

2) Manual Annotation: We used manually-annotated
source code from our previous experiment [3]. The procedure
was as follows: Seven participants were asked to create an
annotation type for any concern recognized in the applica-
tion. Then they marked elements with concern annotations
they thought are relevant. Next, we selected annotation types
(concerns) recognized by at least two participants (26 types
total) – let us call them “shared concerns”. Finally, we merged
all annotation occurrences (marked by at least one person) for
all shared concerns into one project.

For this study, we selected only 9 concerns we clearly
categorized as domain annotations because only this type can

2http://github.com/forge/roaster
3http://github.com/MilanNosal/easy-notes



be recognized during the application runtime. For instance, a
user can easily run an application and click the GUI (graphical
user interface) controls related to “searching”. On the other
hand, it makes no sense to talk about running application in a
way that involves “coding by convention” or “unused code”.

3) Semi-automatic Annotation: Again, we used the same
9 domain-related concerns recognized by participants of the
previous experiment.

We created a simple utility, AutoAnnot, to assist in the
process of semi-automated annotation.

For every concern, the AutoAnnot utility started the pro-
gram two times. A researcher used the program (by clicking,
typing, etc.) as described in section II-B2. The decision what
a particular concern comprises was subjective – left on the
researcher. Meanwhile, our utility recorded executed methods.

Annotations of methods resulting from the differential code
coverage were written into the source code by AutoAnnot.

4) Comparison: For both manually and automatically an-
notated source code, we extracted the mapping from concerns
to their occurrences into XML files using the SSCE NetBeans
plugin4. The resulting XML files were compared by a small
script.

B. Quantitative Results

1) Annotation Count: First, let us compare the number
of methods annotated manually and semi-automatically (Ta-
ble I, column Annotated methods count). The mean number
of annotated methods is only slightly higher for the semi-
automatic approach. This means differential code coverage
does not produce excessively large lists of methods. The
number of methods per concern (2–17) is acceptable for
manual inspection by a developer when needed.

2) Overlap: To study overlap, we decided to define a set
of manually tagged methods for a specific concern as a “gold
standard” – methods which we consider perfectly relevant to
that concern. Note that this definition is certainly not ideal.
Manual annotation was performed by multiple participants,
some of who did not know the system in detail. That being
said, the results are in Table I, column Overlap.

Given the set of methods auto as a result of semi-automatic
tagging and manual of manual tagging, we define (adapted
from [6]) precision as:

precision =
|auto ∩manual|

|auto| · 100%

and recall as:

recall =
|auto ∩manual|
|manual| · 100%

Intuitively, the higher the precision, the less false positives
(methods tagged automatically, but not manually) there are.
The higher the recall, the less false negatives (methods tagged
manually, but not automatically) are present.

Finally, F1 score is defined as a harmonic mean of precision
and recall.

4http://github.com/MilanNosal/sieve-source-code-editor

The mean precision is 42.14%, recall is slightly higher
(44.83%). While not ideal, we consider the F1 score of 40.69%
sufficient, taking into account the limitations of manual tag-
ging.

C. Qualitative Results

Now we will inspect a set of false positives for a concern
with the lowest precision – Links and a set of false negatives
for a concern with the lowest recall – Tagging.

1) Low Precision Causes: The Links concern signifies
links to local files (e.g., article PDFs) and other resources
in bibliographic records. There were 16 methods annotated
automatically, but not manually.

Fourteen such methods were in classes LinksFilter,
EditLinksPanel and ShowLinksPanel. These methods
were not tagged manually because the whole classes they
belong to were tagged by participants. It is not certain what an-
notating a class in respect to its methods means. Do absolutely
all methods of the class pertain to the given concern? Or does
it hold for a majority of methods? Probably the most elegant
solution is to refrain from annotating classes and annotate only
methods instead.

Two methods were in the class
DynamicCollectionPanel. This class is a custom UI
(user interface) component not directly related to the domain
concept of links, but used exclusively to manipulate links in
the EasyNotes application.

2) Low Recall Causes: Notes in the EasyNotes application
can contain tags (conceptually similar to tags in some blogs).
This concern is marked by the Tagging annotation. There
were 7 methods annotated manually for this concern, but not
automatically.

Sometimes it is difficult, if not impossible, to avoid ex-
ecuting some methods in the second (concern-unrelated) run.
For example, the method NotePanel.setTags is called each
time an empty note-adding dialog is shown because a newly
created note contains the “new” tag by default. The method
Note.getTags is called every time a list of notes is displayed,
even if the tag list of each note is empty. The constructor
Note() is called for each note added through the dialog or
loaded from a file.

Other times, a user may miss the functionality during the
first (concern-related) run. For instance, the tagging concern
was not obvious from a note filter (an item in a drop-down list)
called “not used”. It displays all notes which do not contain
tag “new”. This way, the method Note.isUsed was missed.
Even more subtle case is the method Note.isNew, which is
called when a user hovers the mouse cursor over a note for a
while – this is the time when a text for a tooltip is generated.

The methods Note.addTag and removeTag were obvi-
ously annotated manually because of their name. However,
they are not used (called) in the program at all. Thus, if a
programmer wants to get an overview of the current application
state, semi-automatic tagging can be superior to manual one
even if the recall says the opposite.



TABLE I. A COMPARISON OF MANUAL AND SEMI-AUTOMATIC ANNOTATION RESULTS

Concern
Annotated methods count Overlap

Manual Semi-automatic Precision [%] Recall [%] F1 score [%]

Citing 5 2 50.00 20.00 28.57

Filtering 13 9 33.33 23.08 27.27

Links 4 17 5.88 25.00 9.52

Note adding 7 5 60.00 42.86 50.00

Note deleting 2 2 100.00 100.00 100.00

Note editing 6 10 20.00 33.33 25.00

Notes loading 5 10 40.00 80.00 53.33

Notes saving 6 8 50.00 66.67 57.14

Tagging 8 5 20.00 12.50 15.38

Mean 6.22 7.56 42.14 44.83 40.69

D. Threats to Validity

Now we will present threats to validity according to guide-
lines [7].

1) Construct Validity: We used precision, recall and F1

score to measure overlap between a manual and semi-
automatic approach. These metrics are often used to express
classification accuracy [6] in areas like machine learning,
where human-performed recognition is considerably superior
to the machine-performed algorithm. However, in our study it
is not clear what what constitutes a good set of methods for
a given concern. In our previous work [3], we formulated a
hypothesis that the code author is the best annotator. Never-
theless, this hypothesis is not yet confirmed.

2) Internal Validity: Participants of our previous experi-
ment (manual annotation) were asked to annotate methods,
types (classes, enums, etc.) and member variables. Using semi-
automatic annotation, we only took methods into account. This
is probably the most important threat to validity as it might
lower the recall significantly.

3) External Validity: We performed the comparison only
on one particular project. The source code is small: 2.5 kLOC
in 33 classes, excluding annotations. The study should be
repeated on a larger project, preferably from another domain
and using other technologies, to confirm the generality of
results.

4) Reliability: The execution step of differential code
coverage for all concerns was performed entirely by one
researcher. The results are therefore affected by his subjective
decisions, mainly during the execution phase of differential
code coverage.

IV. RELATED WORK

A. Concerns

Revelle et al. [8] performed case studies regarding the
identification of concerns in source code. However, tagging
was performed fully manually. They also present a list of
concern tagging guidelines. Sadly, these guidelines are not
fully applicable for us, since they created an Eclipse plug-in
allowing to tag and color-mark the source code with character
granularity. Standard Java does not allow annotating arbitrary
statements below the method level.

B. Differential Code Coverage

The idea of subtracting code coverage results was originally
described by Wilde et al. [9]. In contrast to our approach, the
traced application was not executed by a user interactively.
They used test cases written in a form of a source code instead.
While their method is more easily reproducible, running the
application interactively is less time-consuming when only one
or a few executions are required.

In [10], Wilde and Casey called their method “software
reconnaissance”. Sherwood and Murphy [5] performed an
experiment using this approach, giving it a more expressive
name “differential code coverage”. Furthermore, instead of
executing test cases, the participants also ran an application
interactively. They present an Eclipse plug-in, Tripoli, which
displays results of differential code coverage graphically. Con-
trary to our approach, they did not persist the results in any
way. Moreover, as annotations are a standard Java feature, our
approach does not require any plugin – just an IDE.

C. Execution Tracing

MUTT [11] is a tracing tool which allows to start and stop
capturing the list of executed methods with a button. This idea
could be applied in connection with differential code coverage,
which could possibly rise the precision.

D. Aspect Mining

Aspect mining [12] aims to identify cross-cutting concerns
in source code. It is therefore focused on concerns unrelated to
the primary functionality of a program, like logging or session
management [13]. Furthermore, aspect mining itself only deals
with finding the corresponding locations in source code and
does not specify a persistence method of the findings.

E. Automatic annotation

Joy et al. [14] use an approach where macros are inserted
into source code, causing collection of timing and power
information at runtime. The collected information are then
back-annotated to the source code. In contrast to our approach,
they did not recognize any concerns or features in the software.



V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this article, we presented a simple approach for semi-
automatic concern annotation. The input of a our demo pro-
gram, AutoAnnot, is an unannotated source code, the exe-
cutable file of an application to be annotated and a concern
name (or a list thereof). The user runs the program two
times – once using the features of interest (a concern-related
run) and then purposely not using them (a concern-unrelated
run). AutoAnnot traces the sets of methods executed and
subtracts the second set from the first one. The resulted set
of methods is marked with Java annotations, overwriting the
original source code. This demonstration answers RQ1: it is
feasible to use differential code coverage for semi-automatic
concern annotation.

To answer RQ2, if we take manually created annotations
as a “gold standard”, both precision and recall are more than
40%, producing the F1 score of almost 41%.

Answering RQ3, the most prominent reason or false pos-
itives (methods annotated just automatically) is an unclear
definition of what language elements should have concern
annotations – whether just methods or also classes and member
variables. One of the main reasons of false negatives are
the inability to avoid executing some methods in a concern-
unrelated run; and forgetting to include some functionality in
a concern-related run.

Regarding the main hypothesis: Our approach definitely
has its potential. However, before actually being used as a
replacement of manual tagging, it must be improved.

B. Future Work

One of disadvantages of our approach is that after each
source code change, all affected concerns must be re-annotated
– the program must be manually run again. A possible solution
is to allow performing concern-related and concern-unrelated
runs as test cases. This way, the method would be fully
automated and it could be executed automatically as a part
of a build process. This could also eliminate the inability to
exclude some behavior in the second run to some extent.

Complementing differential code coverage with a button
starting and resuming trace collection, or even fully replacing
it with these approach, would be an interesting future work.

Types (like classes and enums), member variables, methods
and method parameters can be annotated in Java. From these
elements, only methods have a notion of “execution”. While
we could also intercept member variables reading and writing,
we observed that these actions are often performed without
any relevance to the concern executed. For example, in a
constructor, Java initializes all member variables either to
null or to a defined value. Thus, some form of filtering would
be required to capture only concern-relevant member variable
reads and writes. We decided to leave this for future work.
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