
c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. This is the accepted version of: M. Sulír, M. Nosál’. Sharing developers’ mental models through source code annotations.
Federated Conference on Computer Science and Information Systems (FedCSIS) 2015, pp. 997–1006. 10.15439/2015F301. http://ieeexplore.ieee.org/document/7321551/

Sharing Developers’ Mental Models
through Source Code Annotations

Matúš Sulír, Milan Nosál’
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Email: matus.sulir@tuke.sk, milan.nosal@gmail.com

Abstract—Context: Developers possess mental models contain-
ing information far beyond what is explicitly captured in the
source code. Objectives: We investigate the possibility to use
source code annotations to capture parts of the developers’
mental models and later reuse them by other programmers
during program comprehension and maintenance. Method: We
performed two studies and a controlled experiment. Results:
Developers’ mental models overlap and thus can be shared.
Possible use cases of shared annotations are hypotheses con-
firmation, feature location, obtaining new knowledge, finding
relationships and maintenance notes. In the experiment, the
presence of annotations reduced program comprehension and
maintenance time by 34%. Conclusion: Annotations are a viable
way to share programmers’ thoughts.

I. INTRODUCTION

WHEN programmers develop a new program, they con-
tinuously create a mental model, which is a repre-

sentation of the program in their mind. They try to express
the mental model in the programming language constructions.
However, not all parts of the mental model are transferred into
the source code and some details are lost.

A. Motivation

For example, in small parts of a large information system,
we can be forced to deal with a character encoding different
than in the rest of the system because of the legacy library
limitations.

Later, during the program maintenance phase, developers
make a tremendous effort to recover such types of information
from the source code [2]. However, they rarely persist their
findings [3] and the situation occurs again and again.

We could record the information about the encoding
from the aforementioned example in a form of a Java
annotation @Encoding("win-1250", reason="myOldLib

2.4") above all affected classes or methods. It would be later
possible to use the IDE (integrated development environment)
searching capabilities on the given annotation to find all
methods where this encoding is used if an encoding-related

This work was supported by VEGA Grant No. 1/0341/13 Principles
and methods of automated abstraction of computer languages and software
development based on the semantic enrichment caused by communication.
The first two research questions are also elaborated in the second author’s
PhD thesis [1].

bug is reported or refactoring is planned to replace the legacy
library.

B. Aim

The purpose of this paper is to investigate the viability of
annotations as a medium to share parts of developers’ mental
models.

Hypothesis: Annotations created by one group of devel-
opers are useful for comprehension and maintenance tasks
performed by other developers.

We formulate the research questions as follows:
• RQ1: Do programmers’ mental models overlap?
• RQ2: How do developers use shared annotations when

they are available?
• RQ3: Does using annotations created by others improve

program comprehension and maintenance correctness,
time and confidence?

To answer each of the questions, we used an appropriate
empirical research methodology [4].

II. CONCERN ANNOTATIONS

Before describing the studies, we briefly introduce the
notion of concerns and their kinds.

A. Basic Concepts

A concern can be characterized as a developer’s intent of a
particular piece of code: What should this code accomplish?
How would I tersely characterize it? Is there something special
about it? Some concerns can be obvious by looking at the
code itself (chiefly from names of the identifiers), but many
concerns are hidden.

A concern is similar to an aspect in aspect-oriented pro-
gramming. In contrast to aspects, concerns can overlap –
one piece of code can belong to multiple concerns [5]. This
complicates the situation: We cannot simply name all classes
and methods according to their concerns since one identifier
can have only one name. Thus, we can also look at concerns
as alternative names for identifiers.

It is possible for a class or method in Java to have more than
one annotation. Therefore, source code annotations (attributes
in C# terminology) are an ideal candidate to implement
concerns.



For each distinct concern, we recommend to create one Java
annotation type. For example, we can create an annotation type
@Persistence which tells us the code marked with it fulfills
the task of persistent storage of objects.

Subsequently, in our imaginary program, we could mark
the methods like FileDialog.open(), Note.load(),
Note.save() and a class FileFormat with it. We will call
them annotation occurrences.

At the same time, the first of the mentioned methods could
be also annotated with the @GUI concern, as it presents a GUI
(graphical user interface) dialog to a user.

Compared to traditional source code comments, concern
annotations are more formal. We can use standard IDE features
like navigating to the declaration, usages searching, refactoring
[6] and other on them.

Concern annotations can have parameters to further specify
their properties. They may be also commented by natural
language comments if needed.

B. Kinds of Concern Annotations

Domain annotations document concepts and features of the
application (problem) domain. For example, all source code
elements representing the feature of filtering a list of items
can be marked with an annotation @Filtering. Similarly, all
code related to bibliographic citations could be annotated by
@Citing.

Design annotations document design and implementation
decisions like design patterns, e.g., @Observer.

Maintenance annotations are intended to replace the tra-
ditional TODO and related comments. An example is the
@Unused annotation for parts of code not used in a project
at all.

III. MENTAL MODEL OVERLAPPING

Our first goal is to find out whether at least some of the
concerns recognized by one programmer can be recognized by
other developers. If so, then the mental model of one developer
at least partially overlaps with the other persons’ mental
model. This is a necessary condition for concern annotation
sharing to be useful.

A. Method

We asked multiple programmers to independently annotate
the source code of an existing program. Then we measured to
what extent their annotations overlap.

1) Materials: For this and subsequent studies, we used
EasyNotes1 – a desktop application for bibliographic note-
taking. It is a small-scale Java project consisting of around
2500 lines of code located in 33 classes. Except for scarce
source code comments, it has no documentation available.

1http://github.com/MilanNosal/easy-notes

TABLE I
THE NUMBER OF RECOGNIZED CONCERNS AND ANNOTATION

OCCURRENCES PER INDIVIDUAL SUBJECTS

Subject Concerns Occurrences

A 11 70

B 12 56

C 24 108

D 20 79

E 12 56

F 14 89

G 17 140

Total (distinct) 46 464

2) Participants: This study had 7 participants:
A a researcher and lecturer with PhD in Computer

Science,
B an industrial Java programmer,
C a postdoc and Java programmer,
D an associate professor with extensive Java experi-

ence,
E, F first-year PhD students,
G the author of EasyNotes.

None of the subjects, except for the author, had a previous
experience with EasyNotes. The activity was individual and
the participants were not allowed to interact during the exper-
iment.

3) Procedure: First, the participants were given the original
source code of EasyNotes without any annotations (commit
a299e64). They had an arbitrary amount of time available to
become familiar with the application both from an end-user
and programmer perspective.

Next, they were asked to create a custom annotation type for
each concern they recognized in the application and to mark
classes, member variables and methods with the annotations
they just created whenever they thought it was appropriate.

4) Analysis: Finally, we collected the modified projects and
analyzed them semi-automatically for an overlap in annotation
types and the use of the annotations on specific elements. A
manual intervention was necessary because some participants
used a slightly different name for the same concern – e.g.,
@Tags and @Tagging both represent the “tagging” concern.

B. Results

For each participant, a set of created concerns (annotation
types) was constructed. The number of concerns created by
individual participants ranged from 11 to 24 and the number
of annotation occurrences from 56 to 140 (see Table I).

1) Concern Sharing: We constructed a set of distinct con-
cerns, i.e., an union of all sets of the concerns recognized by
the participants. The size of this set, i.e., a number of distinct
concerns, is 46 (the Total row in Table I). More than a half
of them (26) was shared by at least two participants. We will
call them shared concerns. A list of all shared concerns is in
Table II.



TABLE II
A LIST OF ALL SHARED CONCERNS IN EASYNOTES

Concern Shared by n
participants

Effective
agreement

1 Searching 6 61%

2 Note editing 5 60%

3 Note change observing 5 50%

4 Note presenting 5 21%

5 Unused code 4 67%

6 Tagging 4 64%

7 Persistence 4 41%

8 Links 4 39%

9 Note adding 4 38%

10 Data model 4 36%

11 Loading notes 4 35%

12 Saving notes 4 31%

13 GUI 4 26%

14 Note deleting 4 18%

15 UI-model mapping 4 4%

16 Filter implementation 3 18%

17 TODO 3 8%

18 Exceptions 2 100%

19 Utilities 2 50%

20 Model change watching 2 17%

21 Filters management 2 12%

22 Notes manipulation 2 8%

23 Questions about code 2 0%

24 Coding by convention 2 0%

25 BibTeX 2 0%

26 Domain entity 2 0%

2) Occurrence Sharing: Similarly, we constructed a set of
all distinct annotation occurrences with a total size of 464
(as noted in Table I). 128 of them were so-called shared
annotation occurrences which means they were shared by at
least two participants.

We define an effective agreement as the number of shared
annotation occurrences divided by the total number of annota-
tion occurrences. For our EasyNotes study, the overall effective
agreement was 27.59%. It is possible to see the values of
effective agreement for individual concerns in Table II. We
can consider the effective agreement of a specific concern its
quality indicator – to what extent multiple developers agree
about the mapping of this concern to source code elements.

3) Agreement between Participants: Fig. 1 shows the num-
ber of shared concerns between each pair of participants. We
can obtain interesting insights from this matrix. The subjects
A and D did not create any common annotation type in our
study – this could be an indication of a huge difference in
the mental models of these two people. In fact, D is a former
or current supervisor of all other participants except A. On
the other hand, G (the author of EasyNotes) shares the most
concerns with all other people. This could mean that the source
code author is the best annotator.

8

9

0

4

4

9

8

8

4

3

3

8

9

8

6

8

6

12

0

4

6

5

4

5

4

3

8

5

4

9

4

3

6

4

4

7

9

8

12

5

9

7

G

F

E

D

C

B

A

A B C D E F G

Fig. 1. The number of shared concerns between individual subjects

A similar matrix was constructed for concern occurrences.
Qualitatively, it resembled the annotation type matrix.

C. Threats to Validity

1) Internal Validity: While some hypotheses were outlined
in this section, being an exploratory study [7], there is a need
to properly quantify and statistically confirm or reject them.
This suggest interesting future research directions.

2) External Validity: We performed the study only on a
small-scale Java project. The participants were all from the
same department which could affect their mental models. A
more extensive study should be conducted in the future.

D. Conclusion

We studied mental model overlapping, where parts of the
mental model were represented by source code annotations. In
our study, about

• 57% of all concerns
• and 28% of concern occurrences

were shared by at least two participants. This means there is
a potential in recording and subsequent reuse of these data.

IV. CONCERN ANNOTATIONS USE CASES

The goal of the second study is find out how third-party
developers (i.e., not the annotation authors) use the annotations
in the source code if they are available.

A. Method

We conducted an observational study.
1) Materials: We copied all annotation types shared by at

least two subjects (from the first study, see Table II for a
list) into the EasyNotes project. For each of these annotation
types, we merged all its occurrences (recognized by at least
one developer) into the project. The resulting source code was
manually edited for consistency by the EasyNotes author. It is
published as the commit f52872b.



2) Participants: There were three participants:
K a first-year Computer Science PhD student,
L a masters degree student with a minor industrial

experience,
M a professional developer with 2 years of industrial

experience.
None of them had a previous knowledge of EasyNotes.

3) Procedure: First, all annotations were briefly introduced
by the EasyNotes author. The subjects were reminded about
common feature location possibilities of the NetBeans IDE.

Each participants was given the same task: To add a “note
rating” (one to five stars) feature to EasyNotes. The fulfillment
of this task required a modification of multiple application
layers – from the model to the user interface.

We used a think-aloud method [7], i.e., the participants were
kindly requested to comment their thoughts when compre-
hending the code.

B. Results

We will now look at typical use cases of concern annotations
during our study.

1) Confirming Hypotheses: The most common use of con-
cern annotations was to confirm hypotheses about the code.
For example, the participant K used the @NotesSaving

annotation to confirm that a particular piece of stream-writing
code actually saves notes.

2) Feature Location: In contrast to traditional comments, it
is possible to use the Find Usages feature on an annotation type
to find all concern occurrences. Our participants were finding
the occurrences of the “filtering”, “note adding”, “note saving”
concerns and others. This was considered helpful especially to
find if they did not forget to implement the necessary methods
for a particular aspect of the note rating feature.

3) Non-Obvious Concerns: The developers also used an-
notations to obtain new knowledge about the source code. For
instance, a UI (user interface) code contained a method used
both when adding a new note and when editing an existing
one. However, just a note editing concern was obvious from
a brief source code inspection. Only thanks to the concern
annotation @NoteAdding, the participant M noticed the code
is used for note adding, too.

4) Elements Relationship: The subjects noticed that if two
or more elements are marked with the same annotation type,
there is an implicit relationship between them. For instance,
when using the MVC (Model-View-Controller) design pattern,
the code in the model marked with a specific annotation is
linked with the UI code with the same annotation.

5) Maintenance Notes: The annotation @Unused marks
methods not used in the rest of the code. This helped the
participants to skip them when scanning the code and thus
save time.

C. Conclusion

1) Advantages: The participants stated that compared to
traditional natural language comments, annotations are much
shorter and thus easier to spot. They are also better structured

and usually less ambiguous. The ability to find all usages
of a particular concern through standard features present in
contemporary IDEs was also appreciated.

2) Disadvantages: The participant with an industrial expe-
rience (M) remarked there is a possible scaling problem. Even
in a small project like EasyNotes, 26 shared concerns were
identified. In large projects, where this number is expected to
grow, some sort of concern categorization would definitely be
needed. As Java annotations do not support inheritance, mark-
ing them with meta-annotations or sorting them to packages
are possible solutions.

V. THE EFFECT OF ANNOTATIONS ON PROGRAM
MAINTENANCE

We performed a controlled experiment to study the effect
of the annotated source code on program comprehension and
maintenance.

The guidelines to perform software engineering experiments
on human subjects [8] were used. To present our findings,
the experiment reporting guidelines [9] were followed. We
customized them to the specific needs of this experiment.

A. Hypothesis

Similar to Barišić et al. [10], we were interested in correct-
ness, time and confidence.

We hypothesize that the presence of concern annotations in
the source code improves program comprehension and main-
tenance correctness, time and confidence. Thus we formulate
the null and alternative hypotheses:

H1null: The correctness of the results of program compre-
hension and maintenance tasks on an annotated project = the
correctness on the same project without concern annotations.

H1alt: The correctness of the results of program compre-
hension and maintenance tasks on an annotated project > the
correctness on the same project without concern annotations.

H2null: Time to complete program comprehension and main-
tenance tasks on an annotated project = time to complete them
on the same project without concern annotations.

H2alt: Time to complete program comprehension and main-
tenance tasks on an annotated project < time to complete them
the same project without concern annotations.

H3null: Participants’ confidence of their answers to program
comprehension questions on an annotated project = their
confidence on the same project without concern annotations.

H3alt: Participants’ confidence of their answers to program
comprehension questions on an annotated project > their
confidence on the same project without concern annotations.

We will statistically test the hypotheses with a confidence
interval of 95% (α = 5%).

B. Variables

Now we will define independent variables, i.e., the factors
we control, and dependent variables – the outcomes we
measure.



1) Independent Variables: There is only one independent
variable – the presence of concern annotations in the project.
It has a nominal scale which means there is a finite number
of possible values without any meaningful ordering [4]. The
levels (possible values) of this variable are: yes (“annotated”)
and no (“unannotated”).

2) Dependent Variables: The correctness was measured as
a number of correct answers (or correctly performed tasks)
divided by the total number of tasks (5). The tasks are not
weighted, each of them is worth one point. The assessment is
subjective – by a researcher.

The second dependent variable is the time to finish the tasks.
Its scale is of a ratio type since the ratio between two values
is meaningful [4]. Although it was technically measured with
millisecond precision, we will use the unit “minutes” rounded
to two decimal places in subsequent analysis. We are interested
mainly in the total time, i.e., a sum of times for all tasks.

Instead of measuring just time alone, it is possible to define
efficiency as a number of correct tasks and questions divided
by time. On one hand, efficiency depends on correctness,
which already is a dependent variable. On the other hand,
efficiency can deal with participants who fill the answers
randomly to finish quickly [11]. We decided to use efficiency
only as an auxiliary metric to make sure that time differences
are still significant even if the correctness is considered.

For each comprehension question, we also asked a subject
how confident (s)he was on a 3-point Likert scale: from Not
at all (1) to Absolutely (3). Since we asked a subject about the
confidence equally for each task, we consider it meaningful to
calculate the mean confidence, which is the third dependent
variable.

C. Experiment Design

1) Materials: Again, the EasyNotes project was used. This
time, we prepared two different versions:

• with shared concern annotations (as in the second study)
• and without annotations.
As the project was only scarcely commented, we deleted

all traditional source code comments from both versions to
remove a potential confounding factor. Only comments for
the annotation types themselves were left intact, as we regard
them as their integral part.

During this experiment, we used the NetBeans IDE.
2) Participants: We used 18 first-year master’s degree

Computer Science students as participants. Carver et al. [12]
recommend to integrate software engineering experiments
performed on students with teaching goals. We decided to
execute the experiment as a part of the Modeling and Gener-
ation of Software Architectures course, which contained Java
annotations in its curricula.

The course was attended by students focused not only
on software engineering, but also on other computer science
subfields. Inclusion criteria were set to select mainly students
with a prospective future career as professional programmers.
Additionally, as EasyNotes is a Java project, a sufficient Java
language knowledge was required.

The experiment was performed during three lessons in the
same week – the first time with four students, then 9 and
finally with the remaining 5 students. Each session lasted
approximately 1.5 hours. The study was executed in a separate
room, so the participants were not disturbed.

3) Design: When assigning the subjects to groups, we
applied a completely randomized design [4]. This means that
each group received only one treatment – either an annotated
or an unannotated program – and the assignment was random.
Each participant drew a piece of paper with a number on it.
Subjects with an odd number were assigned to the “annotated”
group, participants with an even number to the “unannotated”
one. Our design was thus balanced, with n=9 per group.

4) Instruments: To both guide the subjects and collect the
data, we designed an interactive web form2. All fields in the
form were mandatory, so the participants could not skip any
task.

We asked the subjects to install a NetBeans plugin, SSCE3.
Although it is not its primary feature, it provides an option
to record programming sessions – time elapsed, a list of open
files and NetBeans windows gaining the focus. Just before the
start of each task, a subject clicked the button to start a new
session, named after the task (e.g., “Filter”). Immediately after
the task was finished, (s)he clicked the button again to end the
session. The collected data were written to an XML file which
the participants uploaded to the web form at the end of the
experiment.

D. Procedure

1) Training: At the beginning of the experiment, the
users were given 5 minutes to familiarize themselves with
EasyNotes from an end-user perspective, without looking at
the source code. This provided them an overview of the
application domain and helped them to better understand their
subsequent tasks. Then, the session monitoring plugin was
briefly introduced.

A short presentation about concern annotations usage in the
NetBeans IDE followed. A researcher presented how to show
a list of all available concerns, how to use the Find Usages
feature on an annotation type and how to navigate from the
annotation occurrence to an annotation type.

Just before each of the two maintenance tasks, the researcher
presented the participants a running application with the
required feature already implemented. This had two positive
effects:

• It significantly lowered the task ambiguity. While a
natural-language description was available in the web
form during the tasks, seeing the finished application gave
the participants greater confidence, so almost nobody
asked unnecessary questions.

• We consider this a replacement for unit tests. As GUI
code is notoriously difficult to test [13], we decided
not implement the test code. At the same time, the

2http://www.jotformeu.com/sulir/sharing-annotations
3http://github.com/MilanNosal/sieve-source-code-editor



researcher’s discretion about the task correctness was not
indispensable during the experiment. Students just knew
they finished the task when their application did the same
thing as we had showed them.

In addition, the participants later uploaded their modified
version of the source code to the web form. This way, potential
disputes could be resolved without time stress.

2) Tasks: The experiment comprised of:
• one additive maintenance task (we will name it Filter),
• three program comprehension questions (Test),
• one corrective maintenance task (Cite),

in that order.
The tasks were formulated as follows:
Filter In a running EasyNotes application, load the sample

notes and look at the searching feature (the down-
right part of the window). Try how searching in
the note text works (the option “Search in”: “text”).
Your task will be to add a filter to the EasyNotes
application, which will search in the notes title (the
option “title”).

Cite In the EasyNotes application, there is a field “Cite
as:” (the down-right window part). Currently, it dis-
plays information in the form: somePubID where
somePubID is the value of the “PubID:” field.
Your task is to modify the program so the “Cite
as:” field will display information in the form:
\cite{somePubID}.

Both tasks were simple, although the Filter task was slightly
more complex than the latter. It required the creation of a new
class with approximately 15 lines of code, whereas the Cite
task could be accomplished by modifying just one source code
line.

The questions asked in the Test about program comprehen-
sion were:

Q1 What does the runDirMenuItemActionPerformed
in the class easynotes.swingui.EasyNotesFrame
do?

Q2 How is the class easynotes.model.abstract-

Model.UTFStringComparator used in the EasyN-
otes project?

Q3 What method/s (and in which class) do perform note
deleting?

3) Demographic Data Collection: At the end of the exper-
iment, the form contained three demographic questions about
the subjects’ abilities:

• a general programming experience,
• their experience with Java, annotations and NetBeans
• and their English level.

Each question had possible answers on a 5-point Likert scale:
from Beginner to Expert. We did not perform any specialized
tests to measure programming experience, as a subjective
opinion is good enough [14].

4) Debriefing: We also included a question asking to what
extent did the subjects use annotations when comprehending

annotated (80.00) unannotated (80.00)

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

c
o

rr
e

c
tn

e
s
s
 [

%
]

Fig. 2. The ratio of correct answers for each group.

the code. Possible answers ranged from Never to Always on
a 5-point Likert scale. Finally, the form also contained a free-
form question where the participants could describe how the
annotations helped them in their own words.

E. Results

The measured values and their summary is presented in
Table III. To analyze the results, we used the R scripting
language, auxiliary Ruby scripts and spreadsheets.

Each specific hypothesis considers one independent variable
on a nominal scale with two levels (annotated, unannotated)
and one dependent variable (either correctness, time or confi-
dence). For each dependent variable, we displayed the values
on a histogram and a normal Q-Q plot. None of the variables
looked normally distributed, so we used the Mann-Whitney U
test as a statistical test for our hypotheses.

1) Correctness: The median of correctness for both the
“annotated” and “unannotated” group was 80%. Except for a
few outliers, all subjects answered exactly 4 out of 5 questions
correctly. See Fig. 2 for a plot.

The computed p-value (roughly speaking, the probability
that we obtained the data by chance) is 0.3898, which is
more than 0.05 (our significance level). This means we accept
H1null. We did not prove that the presence of annotations has
a positive effect on program comprehension and maintenance
correctness.

As we can see in Table III (column Correctness), the most
difficult question was Q2. Only two participants answered
it correctly – both from the “annotated” group. The class
of interest was not used in EasyNotes at all. This fact was
noticeable by looking at the @Unused annotation.



TABLE III
THE EXPERIMENT RESULTS FOR INDIVIDUAL SUBJECTS

The “annotated” group

ID
Correctness [true/false] Time [min] Efficiency

[tasks/min]
Confidence [1-3]

Files Annotations
useful? [1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

1 1 1 1 0 1 80% 12.03 3.00 13.96 28.99 0.14 1 2 3 2.00 19 1

3 1 1 0 0 0 40% 5.23 2.81 11.13 19.17 0.10 3 2 3 2.67 10 3

5 1 1 1 1 1 100% 17.43 3.93 6.71 28.07 0.18 3 3 3 3.00 18 4

7 1 1 1 1 1 100% 7.79 1.43 11.85 21.07 0.24 3 3 3 3.00 10 4

9 1 1 1 0 1 80% 6.72 5.86 3.87 16.45 0.24 3 3 2 2.67 20 2

11 1 1 1 0 1 80% 8.41 4.58 4.32 17.31 0.23 3 3 3 3.00 13 4

13 1 1 0 0 1 60% 20.97 3.48 8.80 33.25 0.09 3 2 3 2.67 11 3

15 1 1 1 0 1 80% 4.64 1.91 5.22 11.77 0.34 2 2 3 2.33 11 2

17 1 1 1 0 1 80% 25.08 6.38 6.99 38.45 0.10 2 2 3 2.33 16 4

Median 1 1 1 0 1 80% 8.41 3.48 6.99 21.07 0.18 3 2 3 2.67 13 3
Std.dev. - - - - - 18.56% 7.41 1.67 3.57 8.80 0.08 - - - 0.35 4.06 -

The “unannotated” group

ID
Correctness [true/false] Time [min] Efficiency

[tasks/min]
Confidence [1-3]

Files Annotations
useful? [1-5]Filter Cite Q1 Q2 Q3 Total Filter Cite Test Total Q1 Q2 Q3 Mean

2 1 1 1 0 1 80% 2.84 4.72 10.66 18.22 0.22 3 2 3 2.67 9 NA

4 1 1 1 0 1 80% 8.76 23.45 8.10 40.31 0.10 3 2 3 2.67 19 NA

6 1 1 1 0 1 80% 18.24 5.23 5.62 29.09 0.14 3 2 1 2.00 17 NA

8 1 1 1 0 1 80% 6.47 5.59 11.23 23.29 0.17 3 2 3 2.67 8 NA

10 1 1 1 0 1 80% 4.82 9.64 17.50 31.96 0.13 3 2 3 2.67 8 NA

12 1 1 1 0 1 80% 11.11 2.09 11.30 24.50 0.16 2 2 2 2.00 13 NA

14 1 1 0 0 1 60% 30.73 7.19 5.50 43.42 0.07 2 2 3 2.33 17 NA

16 1 1 1 0 1 80% 12.56 18.39 16.07 47.02 0.09 3 2 3 2.67 14 NA

18 1 1 1 0 1 80% 25.54 9.59 12.94 48.07 0.08 3 2 3 2.67 16 NA

Median 1 1 1 0 1 80% 11.11 7.19 11.23 31.96 0.13 3 2 3 2.67 14 NA
Std.dev. - - - - - 6.67% 9.56 6.98 4.18 11.06 0.05 - - - 0.30 4.22 -

2) Time: The differences in the total time for all tasks
between two groups are graphically depicted in the box plot
in Fig. 3. The median time changed from 31.96 minutes for
the “unannotated” group to 21.07 minutes for the “annotated”
one, which is a decrease by 34.07%.

The p-value of time is 0.0252, that is less than 0.05.
The difference is statistically significant, therefore we reject
H2null and accept H2alt. The presence of concern annotations
improves the program comprehension and maintenance time.

It is possible to see from Table III (column Time) that
the median time for each individual task was better for the
“annotated” group. The most prominent difference was for the
task Cite. This can be due to the fact that the project contained
the concern annotation @Citing which helped the participants
find the relevant code quickly.

The median of efficiency, which we defined as the number
of correctly performed tasks (and answers) divided by total
time, raised by 42.32% (p=0.0385). This means the time
improvement is significant even if we take correctness into
account.

3) Confidence: The median of mean confidence is the same
for both groups (2.67), as obvious from Table III, column
Confidence / Mean and Fig.4. The p-value is 0.1710 (>

annotated (21.07) unannotated (31.96)

2
0

3
0

4
0

ti
m

e
 [

m
in

]

Fig. 3. Time to complete comprehension and maintenance tasks on an
annotated vs. unannotated project



annotated (2.67) unannotated (2.67)

2
.0

2
.2

2
.4

2
.6

2
.8

3
.0

c
o

n
fi
d

e
n

c
e

 [
L

ik
e

rt
, 

1
−

3
]

Fig. 4. The mean confidence for the “annotated” and “unannotated” group

0.05) and therefore we accept H1null. The effect of concern
annotations on confidence was not demonstrated.

Looking at individual questions, Q2 was clearly perceived
the most difficult. This corresponds with our previous finding
about the correctness. An interesting fact is that no participant
in the “unannotated” group was confident enough to select
the level 3 (Absolutely), while in the “annotated” group,
there were 4 such subjects and two of them really answered
correctly.

4) Other Findings: Although not included in our hypothe-
ses, we also measured how many unique Java source files did
the subjects open in the IDE during the whole experiment. We
excluded the annotation type files in these numbers. The results
are in Table III, column Files. There was only a marginal and
statistically insignificant improvement in medians (from 14 to
13).

As seen from Table III, column “Annotations useful?”,
concern annotations were perceived relatively helpful by the
participants (median 3 from 5-point Likert scale).

Answers to a free-form question asking how specifically
were the annotations useful included:

• faster orientation in a new project,
• faster searching (mainly through Find Usages on annota-

tions),
• less scrolling,
• “they helped me to understand some methods”,
• “annotations could be perfect, but I would have to get

used to them”.

F. Threats to Validity

To analyze threats to validity of this experiment, we used
[15] as guidelines.

1) Construct Validity: Similar to Kosar et al. [11], we com-
pensated the students with points for the participation in the
experiment, which increased their enthusiasm. Unlike them,
we did not reward the participants with bonus points for good
results because our experiment spanned several days with the
same tasks and this would motivate the students to discuss the
task details with classmates, which could negatively affect the
construct validity (interaction between subjects). Furthermore,
the participants were explicitly told not to share experiment
details with anyone. Therefore, we do not consider executing
the experiment in three separate sessions an important validity
threat.

To measure confidence, we used only a 3-point Likert
scale. This decision was not optimal. Because subjects rarely
select the value of 1 (which can be interpreted as guessing
an answer), there were only two values left. This could be
one of the reasons we did not found a statistically significant
difference in confidence.

2) Internal Validity: There could be a selection bias in
the experiment because we selected the participants using
subjective criteria. As we already mentioned, we concentrated
on subjects with a potential future career as developers.

We divided the subjects into groups randomly. Another
possibility was a quasi-experiment (nonrandom assignment),
i.e., to divide the subjects evenly according to the most im-
portant co-factor affecting the results, like their programming
experience. However, random assignments tend to have larger
effect sizes than quasi-experiments [16].

We did not perform a full pilot testing with third-party
participants, only tested the comprehension questions on one
of the researchers. We rejected 3 out of the 6 prepared ques-
tions because we considered them too difficult and ambiguous.
Despite this, all tasks were either completed by almost all
participants (Filter, Q1, Q3, Cite) or by almost none (Q2)
during the experiment. This negatively affected the results for
the “correctness” variable.

During the actual experiment, we used a native language
(Slovak) version of the web form to eliminate the effect of
English knowledge on the results. While the source code was
in English, this did not present a validity threat since all
participants had at least a medium level (3 on a 5-point Likert
scale) of English knowledge.

3) External Validity: We invited only students to our ex-
periment, no professional developers. We can take this fact
positively – concern annotation consumers are expected to be
mainly junior developers, whereas potential annotation cre-
ators are mostly senior developers. Furthermore, some students
may already work in companies during their study.

EasyNotes is a small-scale Java project – around 3 KLOC
(thousands of lines of code), including annotations. The effect
of concern annotations on larger programs should be investi-
gated.

4) Reliability: The concern annotations training (tutorial)
was presented manually by a researcher. However, there were
two independent researchers which took turns.



The experiment is replicable, as we published the data
collection form (http://www.jotformeu.com/sulir/
sharing-annotations) which contains both the guidelines
and links to the materials (two versions of the EasyNotes
project).

5) Conclusion Validity: A small number of subjects (n=9
per group) is the most important conclusion validity threat. If
we used a paired design (to assign both treatments to every
subject), we could easily reach n=18. However, the participants
would quickly become familiar with EasyNotes and the second
set of tasks would be affected by their knowledge.

G. Conclusion

We successfully confirmed the hypothesis that concern an-
notations have a positive effect on program comprehension and
maintenance time. The group which had concern annotations
available in their project reached a time more than 34% shorter
than the group without them (p < 0.05).

On the other hand, we did not discover a significant change
in correctness and confidence. The difference was neither
negative (which could mean the annotations are confusing
because of their “visual noise”) nor positive and it was
probably a result of the discussed validity threats.

VI. RELATED WORK

A. Concerns

Reinikainen et al. [17] present concern-base queries to
reason about the program. However, their approach is based
on UML (Unified Modeling Language) models, while we use
the source code of a system.

Niu et al. [18] propose the application of HFC (hierarchical
faceted categories) on source code. Their approach requires
specialized tools whereas we use source code annotations
which have a standard IDE support.

B. Source Code Projections

In [5], we used concern annotations as one of the ways
to perform source code projections. Projections allow to look
at one source code from multiple different perspectives. For
example, an IDE plugin can filter all code marked with a
specific annotation type and display it in an editable window
– even if it is spread across multiple files.

In this work, we take a more pragmatic approach. We
investigate the possibility to use concern annotations in con-
temporary IDEs, using the features already available, like Find
Usages. Above all, we perform three empirical studies to
assess the viability and find possible use cases of concern
annotations in everyday developer’s life.

C. Annotations

Today, one of the most common applications of annotations
is configuration. A programmer marks selected source code
elements with appropriate annotations. Later, they are pro-
cessed either by an annotation processor (during compilation)
or by reflection (at runtime). For example, annotations can be
used to define concrete syntax in parser generators [19] and

to declare references between elements in a domain-specific
language [20]. This way, annotations can indirectly modify
the annotated program semantics. In contrast, our approach
utilizes annotations just as clues for a programmer which are
processed by an IDE when needed.

Sabo and Porubän [21] use source code annotations to
preserve design patterns. Therefore, their approach does not
include recording and sharing domain and maintenance anno-
tations.

In Java, annotations can be only applied to packages,
classes, member variables, methods and parameters. @Java
[22], an extension to the standard Java language, brings
annotations below the method level. It allows to mark indi-
vidual source code statements like assignments, method calls,
conditions and loops with annotations. This could be useful
to capture e.g., algorithmic design decisions with concern
annotations.

D. Mental Model Overlapping

Revelle et al. [23] also studied concern overlapping. How-
ever, their study included only two concern sets (compared to
our 7). Their results are positive, too. This further confirms
our hypothesis that it is possible to share mental models.

E. Code Bookmarks

Source code bookmarks are one of the standard features
present in today IDEs. They allow a developer to mark specific
source code lines with notes and later list the bookmarks and
jump to each of them.

Collective code bookmarks [24] provide a way to share
parts of developers’ mental models. The plugin allows to share
code bookmarks between developers in a team. However, this
approach is IDE-dependent and the bookmarks are not saved
to the original source code files which complicates standard
procedures like versioning and merging.

F. Maintenance Notes

Developers often write “TODO comments” like // TODO:

fix this to mark parts of source code which need their
attention [25]. IDEs can then try to parse and display these
notes in a task list window.

Our approach is more formal, as annotations are a part of
the standard Java grammar and can be parsed unambiguously.
Furthermore, it is possible to distinguish between multiple
maintenance note types through individual annotation types.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an idea to use Java source
code annotations to capture parts of developers’ mental model,
namely their concerns (intents), thus the name “concern an-
notations”. Each concern (e.g., “searching”, “editing”, “GUI
code”, “unused code”) is implemented as an annotation type.
Subsequently, all classes and methods relevant to that concern
are marked with the given annotation. Two studies and one
experiment were conducted to assess the practical implications
of this approach.



It is possible to share these annotations because the develop-
ers’ mental models overlap: More than a half of the concerns
created by one of 7 developers in our study was recognized
by at least two of them. More than 1/4 of concern occurrences
(locations in source code where a particular annotation is used)
were shared by at least two participants.

An interesting future research question is to what extent
the source code itself, when the same program is created
separately by multiple people, overlaps.

In the second study, we discovered that concern annotations
are particularly useful to confirm hypotheses about the code,
locate the features, find out non-obvious concerns which a
method fulfills, discover hidden relationships between ele-
ments. Concern annotations can be also used as a replacement
of traditional TODO comments.

In the controlled experiment, we showed there is a sta-
tistically significant improvement of development time when
performing program comprehension and maintenance tasks on
a small-scale Java project. The group which had an annotated
version of the same program available, consumed 1/3 less time
than the group which did not have concern annotations present
in the source code.

In our studies, the source code was commented scarcely or
not at all. An interesting future comparison would consider
an annotated program vs. a program without annotations, but
with high-quality traditional source code comments instead.

Currently, the source code is annotated manually by a
programmer, which is a time-consuming task. An interesting
future work would be a method of (semi-)automatic annota-
tion.

REFERENCES

[1] M. Nosál’, “Leveraging program comprehension with concern-oriented
projections,” PhD thesis, Technical University of Košice, Apr. 2015.

[2] T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental
models: A study of developer work habits,” in Proceedings of
the 28th International Conference on Software Engineering, ser.
ICSE ’06. New York, NY, USA: ACM, 2006, pp. 492–501.
http://dx.doi.org/10.1145/1134285.1134355

[3] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the
comprehension of program comprehension,” ACM Trans. Softw.
Eng. Methodol., vol. 23, no. 4, pp. 31:1–31:37, Sep. 2014.
http://dx.doi.org/10.1145/2622669

[4] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer
Publishing Company, Incorporated, 2012.

[5] J. Porubän and M. Nosál’, “Leveraging program comprehension with
concern-oriented source code projections,” in 3rd Symposium on Lan-
guages, Applications and Technologies, ser. OpenAccess Series in In-
formatics (OASIcs), M. J. V. Pereira, J. P. Leal, and A. Simões, Eds.,
vol. 38. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2014, pp. 35–50. http://dx.doi.org/10.4230/OASIcs.SLATE.
2014.35

[6] J. Kollár, I. Halupka, S. Chodarev, and E. Pietriková, “pLERO:
Language for grammar refactoring patterns,” in Computer Science and
Information Systems (FedCSIS), 2013 Federated Conference on, Sept
2013, pp. 1503–1510.

[7] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software En-
gineering, vol. 14, no. 2, pp. 131–164, 2009. http://dx.doi.org/10.1007/
s10664-008-9102-8

[8] A. Ko, T. LaToza, and M. Burnett, “A practical guide to controlled
experiments of software engineering tools with human participants,”
Empirical Software Engineering, vol. 20, no. 1, pp. 110–141, 2015.
http://dx.doi.org/10.1007/s10664-013-9279-3

[9] A. Jedlitschka and D. Pfahl, “Reporting guidelines for controlled ex-
periments in software engineering,” in Empirical Software Engineer-
ing, 2005. 2005 International Symposium on, Nov 2005, pp. 95–104.
http://dx.doi.org/10.1109/ISESE.2005.1541818

[10] A. Barišić, V. Amaral, M. Goulão, and B. Barroca, “Quality in use of
domain-specific languages: A case study,” in Proceedings of the 3rd
ACM SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools, ser. PLATEAU ’11. New York, NY, USA:
ACM, 2011, pp. 65–72. http://dx.doi.org/10.1145/2089155.2089170

[11] T. Kosar, M. Mernik, and J. C. Carver, “Program comprehension of
domain-specific and general-purpose languages: comparison using a
family of experiments,” Empirical Software Engineering, vol. 17, no. 3,
pp. 276–304, 2012. http://dx.doi.org/10.1007/s10664-011-9172-x

[12] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “A checklist for
integrating student empirical studies with research and teaching goals,”
Empirical Software Engineering, vol. 15, no. 1, pp. 35–59, 2010.
http://dx.doi.org/10.1007/s10664-009-9109-9

[13] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: reverse engi-
neering of graphical user interfaces for testing,” in Reverse Engineering,
2003. WCRE 2003. Proceedings. 10th Working Conference on, Nov
2003, pp. 260–269. http://dx.doi.org/10.1109/WCRE.2003.1287256

[14] J. Feigenspan, C. Kastner, J. Liebig, S. Apel, and S. Hanenberg, “Mea-
suring programming experience,” in Program Comprehension (ICPC),
2012 IEEE 20th International Conference on, June 2012, pp. 73–82.
http://dx.doi.org/10.1109/ICPC.2012.6240511

[15] A. A. Neto and T. Conte, “Threats to validity and their control actions
– results of a systematic literature review,” Universidade Federal do
Amazonas, Technical Report TR-USES-2014-0002, Mar. 2014.

[16] V. B. Kampenes, T. Dybå, J. E. Hannay, and D. I. K. Sjøberg,
“A systematic review of quasi-experiments in software engineering,”
Information and Software Technology, vol. 51, no. 1, pp. 71 – 82, 2009,
special Section - Most Cited Articles in 2002 and Regular Research
Papers. http://dx.doi.org/10.1016/j.infsof.2008.04.006

[17] T. Reinikainen, I. Hammouda, J. Laiho, K. Koskimies, and T. Systa,
“Software comprehension through concern-based queries,” in Program
Comprehension, 2007. ICPC ’07. 15th IEEE International Conference
on, June 2007, pp. 265–270. http://dx.doi.org/10.1109/ICPC.2007.36

[18] N. Niu, A. Mahmoud, and X. Yang, “Faceted navigation for software
exploration,” in Program Comprehension (ICPC), 2011 IEEE 19th
International Conference on, June 2011, pp. 193–196. http://dx.doi.org/
10.1109/ICPC.2011.18

[19] J. Porubän, M. Forgáč, M. Sabo, and M. Běhálek, “Annotation based
parser generator,” Computer Science and Information Systems, vol. 7,
no. 2, pp. 291–307, Apr. 2010. http://dx.doi.org/10.2298/CSIS1002291P

[20] D. Lakatoš, J. Porubän, and M. Bačíková, “Declarative specification
of references in DSLs,” in Computer Science and Information Systems
(FedCSIS), 2013 Federated Conference on, Sept 2013, pp. 1527–1534.

[21] M. Sabo and J. Porubän, “Preserving design patterns using source code
annotations,” Journal of Computer Science and Control Systems, vol. 2,
no. 1, pp. 53–56, 2009.

[22] W. Cazzola and E. Vacchi, “@Java: Bringing a richer annotation
model to Java,” Computer Languages, Systems & Structures, vol. 40,
no. 1, pp. 2–18, 2014, special issue on the Programming Languages
track at the 28th ACM Symposium on Applied Computing.
http://dx.doi.org/10.1016/j.cl.2014.02.002

[23] M. Revelle, T. Broadbent, and D. Coppit, “Understanding concerns in
software: insights gained from two case studies,” in Program Compre-
hension, 2005. IWPC 2005. Proceedings. 13th International Workshop
on, May 2005, pp. 23–32. http://dx.doi.org/10.1109/WPC.2005.43

[24] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen,
“Collective code bookmarks for program comprehension,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on,
June 2011, pp. 101–110. http://dx.doi.org/10.1109/ICPC.2011.19

[25] M. Storey, J. Ryall, R. Bull, D. Myers, and J. Singer, “TODO or
to bug,” in Software Engineering, 2008. ICSE ’08. ACM/IEEE 30th
International Conference on, May 2008, pp. 251–260. http://dx.doi.org/
10.1145/1368088.1368123


