
A Quantitative Study of Java Software Buildability

Matúš Sulír and Jaroslav Porubän
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
{matus.sulir,jaroslav.poruban}@tuke.sk

Abstract
Researchers, students and practitioners often encounter a
situation when the build process of a third-party software
system fails. In this paper, we aim to confirm this observation
present mainly as anecdotal evidence so far. Using a virtual
environment simulating a programmer’s one, we try to fully
automatically build target archives from the source code of
over 7,200 open source Java projects. We found that more
than 38% of builds ended in failure. Build log analysis reveals
the largest portion of errors are dependency-related. We
also conduct an association study of factors affecting build
success.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors

General Terms Measurement

Keywords Build systems, Maven, Gradle, Ant, error logs

1. Introduction
In the broadest sense, the purpose of a build system is to
generate output data given a set of inputs [11]. Considering
a more specific, typical scenario, a build system reads a
buildfile – e.g., a Maven POM (Project Object Model) file.
Using the supplied information, it downloads necessary third-
party components. Next, it executes a compiler to produce
binary files from textual source code. Finally, it packages the
program in a format suitable for deployment.

As tools like Make have existed since the 70’s [2], build
systems are often perceived as a solved problem by re-
searchers [9]. Nevertheless, developers often encounter build
problems which negatively affect their work [5].

c© Matúš Sulír and Jaroslav Porubän 2016. Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive version was published in the following publication:

PLATEAU’16, November 1, 2016, Amsterdam, Netherlands
ACM. 978-1-4503-4638-2/16/11...
http://dx.doi.org/10.1145/3001878.3001882

A software system should be buildable from source in one
step [12]. In the Java ecosystem, we expect an invocation of
a build system like Maven, Gradle, or Ant to represent this
step.

In this paper, we aim to provide empirical evidence that
build system invocations of many open source projects fail.
Furthermore, we will look at the reasons of failures and
factors affecting them.

1.1 Motivation
Consider the following three situations:

• A researcher wants to use an open source system in his
next program comprehension experiment.1 He downloads
the software project of interest in a form of a source
code archive, opens it in an IDE (integrated development
environment) and tries to build it.

• A student is willing to contribute to her favorite open
source program with a new feature. She pulls the source
from the project’s version control system. Before starting
the actual work, she checks whether the project can be
built using a command-line interface of the build system.

• A practitioner is trying to fix a bug in a third-party library
their company extensively uses. Again, the necessary
precondition is to make sure the library builds.

All three situations have something in common: The mes-
sage “Build failed” is likely to appear. Instead of doing useful
work, the developers start to inspect cryptic error messages,
search them on the internet, modify project configuration
files, manually install packages and configure paths. This can
take hours to fix – or, at worst, the developer gives up. Such
situations significantly hinder the usability of build systems.

1.2 Aim
While there exists anecdotal evidence that open source sys-
tems are sometimes difficult to build [9], large-scale studies
on a substantial number of projects are rare.

1 We are motivated by our frustration when we tried to build multiple large
open source projects without success. This also partially affected some
decisions in our experiments and studies [13, 14].

Java projects at Github (~2,000,000)

random projects matching the criteria (10,000)

build success (4,494) build failure (2,764)

error types (292)

error categories (12)

projects with a recognized build-file (7,264)

association study

RQ3

RQ1

RQ2

RQ2

timeout (6)

Figure 1. The study overview

We strive to simulate a simple programming environment
of a Java developer, download a large number of open
source Java projects from the software forge GitHub, fully
automatically execute the build command for each of them,
and observe the build process outcomes.

We formulate our research questions as follows:

• RQ1: What portion of projects fail to build?
• RQ2: What types of build errors do occur most fre-

quently?
• RQ3: Is there association between the build success/failure

and other project’s properties (e.g., the used build tool,
age)?

1.3 Methodology
For a high-level overview, see Figure 1. In section 2, we
answer RQ1 by a simulation study. Using the collected data,
a semi-automated classification of failed builds (RQ2) is
presented in section 3. An association study is also performed
on the data (RQ3), which is described in section 4.

2. Build Failure Proportion
In this section, we answer the first research question.

2.1 Method
The data collection process consisted of two steps: obtaining
a list of suitable projects, and the building process itself. The
whole process was fully automated, controlled by a script.

2.1.1 Project Selection
From a set of all public repositories at a large software
forge, GitHub, we selected a random sample of projects
corresponding to the following inclusion criteria:

• projects written in Java,
• not using JNI (Java Native Interface), Android or Java

Micro Edition (ME) APIs,
• having an open source license,

• and forked at least once.

Now we will describe the rationale behind the criteria and
details of the process.

In this study, we focused only on projects written in
the Java language. Java seems like an ideal choice, since
it is a compiled language and it offers very feature-rich
build systems. To determine the project’s main language, the
GitHub API2 was used. There were approximately 2,000,000
Java projects on GitHub at the time the study was conducted
(see Figure 1).

We were interested only in open source projects. To as-
sess whether a particular project is open-source, we utilized
the information supplied by the GitHub API. GitHub pro-
duces these data by matching the contents of “License” files
with a set of well-known licenses. Around 20% of GitHub
repositories contain a recognized license.3

Only repositories with at least one fork were included.
First, this indicates that there is some interest in cooperation
on a project. Second, this criterion lowered the number of
results by a factor of 10 to keep the number of searched
repositories reasonable.4

We requested the GitHub API with a combination of
queries corresponding to the above criteria. From the list
of returned repositories, a random sample was selected. The
most recent version (the current “master” branch) of each
project was downloaded in a form of a tarball. The total
number of downloaded archives was 14,567.

After extraction of the archives, the presence of JNI,
Android and Java ME APIs was tested using file name and
content patterns. The reason for exclusion of projects using
these APIs was to maximize internal validity. Thanks to
JNI, Java source code could call methods written in other
languages, while we were interested in pure Java. We would
be no longer testing just Java build systems, but also other
toolchains outside the Java ecosystem, which also applies to
Android and Java ME.

The resulting set of random projects, corresponding to the
inclusion criteria, consists of 10,000 projects.

2.1.2 Build Process
For each of the 10,000 projects, a primary build tool was
recognized by the script. In our study, we focused on three
popular build systems: Gradle, Maven and Ant. To assess
which build system a particular project uses, the presence of
a build-file was checked in the project’s root folder. For a
list of file names, see Table 1, column “File name”. In case
multiple build-files are found in the root directory, Gradle
takes precedence over Maven, and Maven has higher priority

2 http://developer.github.com/v3/
3 http://github.com/blog/1964-open-source-license-usage-
on-github-com
4 The GitHub API does not support random selection of repositories, so we
needed to retrieve metadata for all projects matching the criteria and sample
them locally.

Table 1. The studied build systems (auxiliary log-formatting arguments were omitted)
Tool File name Build command
Gradle build.gradle gradle clean assemble
Maven pom.xml mvn clean package -DskipTests
Ant build.xml ant clean; ant jar || ant war || ant dist || ant

than Ant. The ordering is based on an assumption that newer
systems are used as a primary build tool, while preserving
the legacy ones for compatibility.

If a project contained build-file(s) only in non-root directo-
ries, or did not include a build-file at all, we excluded it from
further processing. This leaves us with 7,264 projects.

The builds were executed using the lightweight virtual-
ization platform Docker5. The goal was to simulate a simple
yet functional software environment of a Java programmer.
The Docker image (available at http://quay.io/sulir/
builds) contained the following software:

• the Linux distribution Fedora,
• Java SE Development Kit (JDK) 8,
• Gradle, Maven and Ant build tools,
• the dependency manager Ivy,
• the version control system Git,
• a Ruby interpreter (to execute the control script),
• and the “tar” and “unzip” utilities.

The control script executed the build process for each
project sequentially. For every project, an appropriate build
command was run, corresponding to the project’s build tool
– see Table 1, column “Build command”. Their general goal
is to produce a runnable Java archive from source files.
The underlying idea is that a developer should be able to
execute the corresponding command on any project using
the given build tool, without reading and following any
complicated instructions or modifying the project’s files, and
the build output should be generated successfully. In cases
when the build tool enables exclusion of tests via command-
line arguments, we utilized it, since the output archive can be
generated and software can be often successfully executed
even if tests fail.

During each build process execution, both standard and
error output streams of a build process were redirected to a
log file. The exit code of the process was recorded: a non-zero
exit code signifies failure (or timeout). The execution time of
one build was limited to one hour. This was necessary since
we encountered infinite builds during pilot runs. The project
data – exit codes and auxiliary metrics like the number of files
in source archives – were stored in a CSV (comma-separated
values) file for further analysis.

5 http://www.docker.com

Ant (8.25%)

Gradle (11.13%)

Maven (53.26%)

no/undetected (27.36%)

Figure 2. The recognized build tools

failure (38.05%)

success (61.87%)

timeout (0.08%)

Figure 3. The build success vs. failure

2.2 Results
In total, 72.64% of 10,000 projects have a recognized buildfile
in its root directory. The most popular tool is Maven – see
Figure 2.

Among other findings, 8.54% of projects contained such
buildfile in a non-root directory. Since Ant does not provide
dependency resolution capabilities itself, we were interested
in how many projects using it also utilize the dependency
manager Ivy. The number is relatively low: 10.18%.

In Figure 3, we see that 38.05% of builds failed. This
means in almost 4 of 10 cases, the programmer would not be
able to produce a target archive from the source code without
manual intervention.

A negligible part of builds did not meet the time require-
ment. Some of the reasons are lengthy dependency resolution
and downloading, and expecting user input.

3. Build Error Types
In this section, we will analyze the reasons of the mentioned
failures.

3.1 Method
To determine the kind of failure, the logs were searched
for the presence of certain patterns. Since each build tool

has its own log format, first we associated a buildtool-
dependent, machine-readable error type with each log (e.g.,
“MojoFailure:maven-compiler-plugin”). This process was
automated. Second, a significant portion of error types was
manually grouped into tool-independent, human-readable
categories (e.g, “Java compilation”).

3.1.1 Maven
A failing build is caused by a thrown Java exception, which
is present in the log. Therefore, we decided to use exception
class names as a Maven error types, with the “Exception”
suffix removed for brevity.

However, the exception can be chained. For example,
a LifecycleExecutionException can be caused by a
CompilationFailureException, which can be caused by
another one, etc. Fortunately, Maven logs contain a URL of a
web page describing the relevant exception. We extracted the
exception class name from this URL. In cases when multiple
URLs were present, we extracted the class name from the last
URL since it usually contained the most specific exception.

Some exception class types, e.g. MojoExecutionExcep-
tion, are too vague. In such cases, we searched for a presence
of the pattern “Failed to execute goal. . . ” and extracted the
Maven plugin name which caused the failure, for instance,
maven-javadoc-plugin. We then labeled the project with
an error type in the form of “ExceptionClass:plugin-name”
(see Table 2 for examples).

3.1.2 Gradle
For Gradle, the thrown exception class was considered too.
Since Gradle does not include a URL in its logs like Maven,
we analyzed the printed Java exception ourselves. The situ-
ation was more complicated because Gradle sometimes uti-
lizes multi-cause exceptions, when one exception is caused
by more than one other exceptions, forming “exception trees”.
Assigning multiple error types to one build would unneces-
sarily complicate further analysis. Therefore, after a manual
inspection of a subset of Gradle logs, we decided to use the
following method to find the most relevant exception: If it
was a simple (unchained) exception, it was selected. Other-
wise, the first most direct cause of the root exception was
selected. For example, in the exception tree “A caused by B
and C (caused by D)”, we selected the exception B.

Two exception classes were too vague, so we enriched
the error type with the name of the failed task in these cases.
Finally, for the PluginApplicationException, the failing
plugin name was appended.

3.1.3 Ant
Since Ant throws the same exception (BuildException)
for all possible build failure reasons, it is useless for error
classification. However, Ant prints names of individual targets
as it executes them. Therefore, we were able to extract the
last executed target – i.e., the failing one. The error type is in
the form “Target:target-name” in this case. If the build failed

Table 2. The most frequent Maven error types
Error type %
DependencyResolution 39.11
MojoFailure:maven-compiler-plugin 18.16
UnresolvableModel 10.59
MojoExecution:maven-javadoc-plugin 8.17
ProjectBuilding 2.47
PluginResolution 2.41
MojoExecution:git-commit-id-plugin 1.70
PluginManager 1.65
MojoExecution:maven-antrun-plugin 1.37
MojoExecution:exec-maven-plugin 1.10
MojoExecution:maven-enforcer-plugin 1.04
AetherClassNotFound 0.77

before even one target was started, we analyzed the log for a
presence of frequently occurring natural language patterns,
determined by a manual inspection of the remaining logs.

3.1.4 Categorization of Error Types
In total, there were 292 different error types. Our goal was
to categorize them, using human-readable names. Since
this process was performed manually and the number of
error types was large, we decided to categorize only more
frequently occurring error types. While just 84 error types
were categorized, they represented more than 86.5% of build
failures.

The categorization was performed by one of the authors.
He discussed the documentation, inspected sample logs, and
searched web forums to seek help with the categorization.
When he was unsure, he left the error type uncategorized.

3.2 Results
First, we will present error types for individual build tools.
Next, a overview of error categories will be presented.

3.3 Error Types
The most frequently occurring Maven error types are dis-
played in Table 2. A very large portion of Maven builds
ends with the “DependencyResolution” error. This includes
temporary and permanent network problems of the servers
hosting the dependencies, authorization errors, missing files
on servers due to reasons like discontinued dependency host-
ing or removed older versions, invalid POM files, and many
others.

For the most frequent Gradle error types, see Table 3. At
the top, there is a “CompilationFailed” error which includes
traditional Java compilation errors like undefined symbols,
missing packages, incompatible types, etc.

Table 4 displays Ant error types. The most frequently
failing target is “compile”.

non−Java compilation 0.7%

wrong JDK version 0.8%

buildfile parsing/compilation 1.2%

other build tool integration 1.6%

packaging 1.8%

version control integration 1.9%

external program execution 2.4%

file not found 3.7%

configuration 4.7%

documentation generation 6.4%

Java compilation 22.1%

dependencies 39.2%

Failure by category [%]

0 10 20 30 40

Figure 4. The error categories

Table 3. The most frequent Gradle error types
Error type %
CompilationFailed 22.36
MissingProperty 11.59
PluginApplication:ShadowJavaPlugin 7.66
Gradle:javadoc 5.59
InvalidUserData 5.18
ModuleVersionNotFound 3.93
Exec 3.52
ModuleVersionResolve 3.52
Resolve 2.69
IllegalArgument 2.48
CustomMessageMissingMethod 2.07
MultipleCompilationErrors 1.86

Table 4. The most frequent Ant error types
Error type %
Target:compile 21.83
CannotImport 17.03
Target:-do-compile 12.23
Target:build 3.28
Target:build-project 2.84
unknown 2.84
Target:compile-import-shared 2.62
Target:-init-check 1.75
Target:jar 1.75
MissingPath 1.53
Target:-do-init 1.53
TaskdefNotFound 1.31

3.4 Error Categories
Error categories combined for all build tools are shown in Fig-
ure 4. Notably the largest portion of builds are dependency-
related (39.2%). This is caused by Maven builds to a large
degree – more than a half of failed Maven builds end with
various dependency-related exceptions.

Compilation of Java source code caused 22.1% of failures.
Note that some compilation failures might be a consequence
of missing dependencies [10].

Surprisingly, 6.4% of failures occurred during documen-
tation generation. Some builds failed because of missing or
invalid configuration properties (4.7%) and missing files or
directories (3.7%).

4. Relation of Build Results to Project
Properties

We hypothesize there is some form of association between
the build result of a project and its properties. Specifically,
we consider the project’s build tool, size, popularity, age and
last update recency.

• H1: The probability that a build fails depends on the build
tool which the project uses.

• H2: Builds of larger projects fail more likely than that of
smaller ones. Project size was measured by a file count,
as suggested by McIntosh et al. [8].

• H3: Failing project are less popular, in terms of “stars”
received on GitHub.

• H4: Older projects, considering creation dates, fail more
likely.

• H5: More recently updated projects have a higher proba-
bility of a passing build.

Ant

Gradle

Maven
success

failure

0% 25% 50% 75% 100%

Figure 5. The build status for individual build tools

4.1 Method
The build status is a nominal variable with two possible
values: “pass” and “fail”. The build tool is a nominal variable,
while all other project properties are numeric (interval).

To be usable in statistical tests, dates must be converted
to numeric values. We decided to use relative measures for
readability reasons. Project age was measured as a number of
days between the creation date of a particular project and of
the newest project. A similar measure was used for recency –
using the “last updated” dates.

To determine whether the dependence of the build status
and build tool is statistically significant, we used the Pearson’s
chi-squared test. To assess the dependence of build status and
all other properties, a two-sided Mann-Whithey U test was
performed. A confidence level of 99% was used (p-value
should be < 0.01).

4.2 Results
The chart of projects’ build status for each build tool is
in Figure 5. Maven builds tend to be the most successful
(65.8%), while Ant fails the most often (44.4% success rate).
The differences are statistically significant (p-value < 0.0001),
confirming H1. Cramér’s V is 0.146, which means small to
medium effect size.

In Figure 6, there are four beanplots depicting distributions
and medians (horizontal lines) of file count, star count, age
and update recency for projects with passed (left side) vs.
failed (right side) builds. Outliers were trimmed from the
display, but preserved in calculations.

Projects with a successful build had a median of 70 source
files, while this number was 101 for the failing ones (a 44%
difference). This is natural – larger projects are usually more
complex and thus more error-prone. The result is statistically
significant, with a p-value of less than 0.0001, so H2 is
accepted.

There is a difference in the number of “stars” for the two
groups – a median of 3 vs. 2. The difference is not statistically
significant (p = 0.0226).

When considering dates of creation (H4), there is ~17%
difference of age between passing (median ~722 days) and
failing (841 days) builds. For a date of last update (H5), the
situation is similar, but the difference is more striking: 174 vs.
312, i.e, a difference of 79%. Both results are statistically
significant (p < 0.0001). A possible explanation is that
build scripts require maintenance – even if the project is
untouched – to deal with changes in build tools themselves.

After inspecting the results for individual build tools, Maven
builds showed the largest difference.

Note that this is only an association study – it does not
mean that simply selecting Maven will make your project less
prone to build failures. There may be complex relationships
among multiple factors. For example, Ant projects tend to be
older and slightly larger than other.

5. Discussion
Some portion of the failed projects could be buildable if we
manually read the README file and followed the instruc-
tions provided. We argue that automated builds are not fully
automated if they require a programmer to manually down-
load dependencies, edit configuration files or perform other
steps.

Nevertheless, we tried to manually download and build
3 random failing projects, using instructions provided in the
README files (if present). If errors occurred anyway, we
tried to correct them.

The first build failed even after we followed the instruc-
tions. It was successfully build only after we downgraded
Gradle – the build system itself – from version 2.14 to 2.10.
This shows that some projects require specific older versions
of tools. An interesting fact is that the project was last updated
less than a year before the study execution, so the “project
rot” can occur quite fast.

The second project, with a name ending with “-core”,
failed because of a missing JAR file. This file could be pro-
duced by manually downloading and building a related “-utils”
project. In README, there was only a brief mention that the
project depends on the “utils” package. It is questionable why
automated dependency management was not used, since both
projects were using Maven, which has a built-in support for
this.

The third project did not mention any building instructions
in its README. Its build failed because a “snapshot” version
of a third-party dependency was used. This version was
probably available in the Maven repository in the past, but
now it is not. After we corrected the version to a final one
in the Maven POM file, a compilation error “package does
not exist” occurred because of another missing dependency,
unrelated to the previous one. Although we were trying to
edit the POM file to download this dependency, builds were
always failing with various download errors. We even tried
downloading necessary JARs manually, but without success.

6. Threats to Validity
First, our results are valid only for the presented project se-
lection criteria. Further studies should extend the criteria,
particularly to include Android applications/libraries, which
are becoming increasingly popular. Furthermore, about 80%
of GitHub repositories do not contain a license file6 – includ-

6 http://github.com/blog/1964-open-source-license-usage-
on-github-com

0
1
0
0

2
0
0

3
0
0

4
0
0

passed vs. failed

file count

0
5

1
0

1
5

2
0

passed vs. failed

stars

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

passed vs. failed

age [days]

0
5
0
0

1
0
0
0

1
5
0
0

passed vs. failed

last update [days]

Figure 6. Beanplots (distributions+medians) of project characteristics

ing them could affect the results. Since analyzing GitHub
alone has its disadvantages [4], we could also explore soft-
ware forges other than GitHub.

The project’s primary programming language was deter-
mined using the GitHub API, which uses a mapping of file
extensions to languages, and returns a language in which the
most bytes are written. This means the projects could utilize
also other languages. However, we consider the presence of a
Java build script in the project root directory a sign that the
project (or its Java part) is buildable using Java tools. Further-
more, we excluded projects using JNI (although exclusion
patterns for Android and JNI might not be faultless). Finally,
only 2.4% of failures were caused by external program exe-
cution, and even only some portion of them were because of
an absence of a specific tool.

The selection of tools in our virtual environment might
not represent a typical developer’s setup. Nevertheless, they
represent a minimal toolchain to download further tools and
libraries as dependencies if necessary.

For Gradle and Maven, tests were excluded from the build
process. For Ant, there is no command-line switch available
for test exclusion, so they could potentially run. Our goal was
that a single, universal command should be executed, which
should just produce an output archive, without performing
other activities like testing and deployment. The ad-hoc
nature of Ant makes it difficult, so we resorted to the nearest
behavior possible – similar to what a real developer could do
without modifying build scripts. Overall, less than 0.4% of
failures are test-related, which makes this threat negligible.

Some build tools cache downloaded dependencies. Our
script does not clean the cache directories between individual
builds. While this could in theory decrease internal validity,
external validity is strengthened – the programmer does not
clean them often either.

Not all error types were categorized, so there may exist
other categories, and the actual percentages of existing ones
can slightly differ. However, 86.5% of failed builds corre-
spond to categorized error types. A similar approach was
used by Seo et al. [10] – they covered about 90% of their
dataset.

Since Ant target names are generally free-form, they might
not be the best categorization criterion. Using a custom logger,
like in [7], we could extract task names to obtain more precise
results.

Although categorization of error types was performed
manually and solely by one researcher, this study is fully
replicable and the analytical part is fully reproducible. The
Docker image, scripts for analysis, and other materials are
available at http://sulir.github.io/build-study.

7. Related Work
In this section, we will review some works related to build
systems, with a focus on failure analysis.

Kerzazi et al. [5] found that 18% of automated builds
of an industrial web application failed during a period of
6 months. In an exploratory study by Neitsch et al. [9], 4
of the 5 selected multilanguage Ubuntu packages could not
be built or rebuilt without intervention. While these studies
thoroughly investigated a small number of systems, our study

takes a quantitative approach: it encompassed over 7,000
various projects.

A study [10] conducted at Google showed that 30% of
developers’ Java builds executed on a centralized build server
failed. In contrast to our study, they used own proprietary
build system, analyzed only compiler messages instead of
full build system logs, and studied multiple builds of the same
systems over time.

According to Beller et al. [1], 59% of broken builds on a
continuous integration server Travis CI were caused by a test
failure. Our study complements these results by examining
failure reasons other than unsuccessful tests.

Vasilescu et al. [15] described association of various
project characteristics with the success of their build. They
analyzed existing builds on a continuous integration server,
while we created a virtual environment simulating a devel-
oper’s local system.

McIntosh et al. [8] performed a study of build systems
on a large number of projects. Some of their findings are
consistent with ours – for example, that Maven requires the
largest build maintenance effort. They were not interested in
build successes and failures, though.

Among other characteristics, McIntosh et al. [7] studied
the build-time length of open source projects. However,
success/failure rates and failure reasons were not presented.

In a study by Hochstein and Jiao [3], 11% of regression
test failures were due to failed builds. They investigated only
one project, though.

8. Conclusion
In a virtual environment containing programming tools, we
tried to automatically build more than 7,000 Java projects
from GitHub, corresponding to the selection criteria. Answer-
ing RQ1, more than 38% of these projects failed to build.
Regarding RQ2, the most frequent errors were dependency-
related, followed by Java compilation and documentation
generation. To answer RQ3, the likelihood of a build failure
is associated with the build tool used; we also found that
larger, older and less recently updated projects fail more.

Regarding the methodology, we presented an example of
a simulation study in software engineering. In real life, we
observed interesting behavior on a small number of projects.
In a virtual environment, we tried to simulate the behavior
which would be performed by programmers (i.e., building
the projects) on a large sample and observed the outcomes.

While we did not study closed-source industrial systems
themselves, they are also affected by this study since they
often incorporate open source libraries in various ways.

9. Future Work
Especially for novices, error messages are often unreadable
[6]. By determining what build error messages are the most
common, we can focus on making them more programmer-

friendly. For example, we can break a frequently occurring
generic message into multiple specific ones.

An important challenge is a more precise specification of
the build environment and build process. A viable example is
the Travis CI configuration file “.travis.yml”, present in about
18% of our studied projects. Its current role is to specify a
build environment and steps in a machine-readable way for
use on a CI (continuous integration) server. Extending its
scope to local (desktop) builds seems like an interesting idea.

External dependency management causes both mainte-
nance effort [8] and build failures. Creating a system auto-
matically generating and updating a build configuration by
analyzing libraries in the source code would be useful.

Although we manifested the severity of build failures,
we did not provide much guidance how to avoid them. It
would be very useful to create a list of recommendations for
programmers and build maintainers.

Researchers are welcome to perform further empiri-
cal studies using our images and scripts (http://sulir.
github.io/build-study). Extending the scope to C, C++
and other languages, performing a longitudinal study – ana-
lyzing the history of successful and broken builds over time,
or measuring build/rebuild time are only a few interesting
future research directions.

Acknowledgments
This work was supported by project KEGA No. 019TUKE-
4/2014 Integration of the Basic Theories of Software En-
gineering into Courses for Informatics Master Study Pro-
grammes at Technical Universities – Proposal and Implemen-
tation.

References
[1] M. Beller, G. Gousios, and A. Zaidman. Oops, my tests broke

the build: An analysis of Travis CI builds with GitHub. PeerJ
Preprints 4:e1984v1, 2016.

[2] S. I. Feldman. Make – a program for maintaining computer
programs. Software: Practice and Experience, 9(4):255–265,
1979. ISSN 1097-024X. doi: 10.1002/spe.4380090402.

[3] L. Hochstein and Y. Jiao. The cost of the build tax in scientific
software. In Empirical Software Engineering and Measurement
(ESEM), 2011 International Symposium on, pages 384–387,
Sept. 2011. doi: 10.1109/ESEM.2011.54.

[4] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M.
German, and D. Damian. The promises and perils of mining
GitHub. In Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, pages 92–101, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2863-0. doi:
10.1145/2597073.2597074.

[5] N. Kerzazi, F. Khomh, and B. Adams. Why do automated
builds break? An empirical study. In Software Maintenance
and Evolution (ICSME), 2014 IEEE International Conference
on, pages 41–50, Sept. 2014. doi: 10.1109/ICSME.2014.26.

[6] G. Marceau, K. Fisler, and S. Krishnamurthi. Mind your lan-
guage: On novices’ interactions with error messages. In Pro-

ceedings of the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software,
Onward! 2011, pages 3–18, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0941-7. doi: 10.1145/2048237.2048241.

[7] S. McIntosh, B. Adams, and A. Hassan. The evolution of ANT
build systems. In Mining Software Repositories (MSR), 2010
7th IEEE Working Conference on, pages 42–51, May 2010.
doi: 10.1109/MSR.2010.5463341.

[8] S. McIntosh, M. Nagappan, B. Adams, A. Mockus, and A. E.
Hassan. A large-scale empirical study of the relationship
between build technology and build maintenance. Empirical
Software Engineering, 20(6):1587–1633, 2015. ISSN 1382-
3256. doi: 10.1007/s10664-014-9324-x.

[9] A. Neitsch, K. Wong, and M. Godfrey. Build system issues
in multilanguage software. In Software Maintenance (ICSM),
2012 28th IEEE International Conference on, pages 140–149,
Sept. 2012. doi: 10.1109/ICSM.2012.6405265.

[10] H. Seo, C. Sadowski, S. Elbaum, E. Aftandilian, and R. Bow-
didge. Programmers’ build errors: A case study (at Google).
In Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE 2014, pages 724–734, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2756-5. doi:
10.1145/2568225.2568255.

[11] P. Smith. Software Build Systems: Principles and Experience.
Addison-Wesley Professional, 2011.

[12] J. Spolsky. Joel on Software, chapter The Joel Test: 12 Steps to
Better Code, pages 17–30. Apress, Berkeley, CA, 2004. ISBN
978-1-4302-0753-5. doi: 10.1007/978-1-4302-0753-5_3.

[13] M. Sulír and M. Nosál’. Sharing developers’ mental models
through source code annotations. In 2015 Federated Confer-
ence on Computer Science and Information Systems (FedCSIS),
pages 997–1006, Sept. 2015. doi: 10.15439/2015F301.

[14] M. Sulír and J. Porubän. Locating user interface concepts
in source code. In 5th Symposium on Languages, Applica-
tions and Technologies (SLATE’16), volume 51 of OpenAc-
cess Series in Informatics (OASIcs), pages 6:1–6:9, Dagstuhl,
Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik. ISBN 978-3-95977-006-4. doi: 10.4230/OASIcs.
SLATE.2016.6.

[15] B. Vasilescu, S. v. Schuylenburg, J. Wulms, A. Serebrenik, and
M. G. J. v. d. Brand. Continuous integration in a social-coding
world: Empirical evidence from GitHub. In Proceedings of the
2014 IEEE International Conference on Software Maintenance
and Evolution, ICSME ’14, pages 401–405, Washington, DC,
USA, 2014. IEEE Computer Society. ISBN 978-1-4799-6146-
7. doi: 10.1109/ICSME.2014.62.

