
c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works. This is the accepted version of: M. Sulír, J. Porubän. Labeling Source Code with Metadata: A Survey and Taxonomy. Federated Conference on
Computer Science and Information Systems (FedCSIS) 2017, pp. 727–735. 10.15439/2017F229. http://ieeexplore.ieee.org/document/8104629/

Labeling Source Code with Metadata:
A Survey and Taxonomy

Matúš Sulír, Jaroslav Porubän
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics
Technical University of Košice

Letná 9, 042 00 Košice, Slovakia
Email: {matus.sulir,jaroslav.poruban}@tuke.sk

Abstract—Source code is a primary artifact where program-
mers are looking when they try to comprehend a program.
However, to improve program comprehension efficiency, tools
often associate parts of source code with metadata collected from
static and dynamic analysis, communication artifacts and many
other sources. In this article, we present a systematic mapping
study of approaches and tools labeling source code elements with
metadata and presenting them to developers in various forms. We
selected 25 from more than 2,000 articles and categorized them.
A taxonomy with four dimensions – source, target, presentation
and persistence – was formed. Based on the survey results, we
also identified interesting future research challenges.

I. INTRODUCTION

DURING their work, developers often encounter situations
when they are trying to understand a program by looking

at its source code, but the critical information they seek is not
present in the code. Consider the following examples.

A small but tricky piece of code worked a few days ago,
but now it does not. The programmer must open a web
browser, navigate to the version control system (VCS) website
and find the relevant commit. It refers to the issue tracking
system, which is a separate website. After reading the whole,
particularly long issue description and a multitude of related
comments, he finally finds the reason of the malfunction.

Another programmer tries to comprehend a rather compli-
cated algorithm. It is difficult to understand it just by looking
at the code, so he decides to provide sample input data
and debug the program using a built-in debugger of an IDE
(Integrated Development Environment). While it is possible to
display a value of any variable at any time, the debugger does
not present any overview of values of a particular variable
over time. Each time a program stops, the programmer must
remember a value of interest and compare it with previous
values in mind. As the capacity of short-term memory is very
limited, the developer soon starts writing notes in a separate
document. This, in turn, creates a burden of switching between
two separate views (a split-attention effect [1]).

These two – at the first glance unrelated – scenarios have
something in common: The information a developer needed
was available sometimes or somewhere. But it was not avail-
able in the right place at the right time: in the IDE, and

This work was supported by project KEGA 047TUKE-4/2016 Integrating
software processes into the teaching of programming.

associated with the particular piece of code the developer was
looking at.

Many researchers have realized this problem and provided
various approaches, methods and tools to partially solve some
of its aspects. However, since authors use a rather large variety
of terms to describe them, gaining an overview is difficult.
For this reason, we decided to provide a survey of existing
approaches and categorize them in a taxonomy.

Our general research questions for this survey are:
• RQ1: What various approaches (and tools implementing

them) do exist to label parts of source code with ad-
ditional metadata and present them to a programmer in
order to improve program comprehension?

• RQ2: How can the approaches be categorized?
• RQ3: What observations and challenges can be con-

cluded from the results?

II. METHOD

We decided to conduct a systematic mapping study, which
is a form of a systematic literature review (SLR). In contrast to
an SLR, a mapping study has more general research questions
[2] and the main goal is to classify research to categories,
rather than provide precise quantitative results [3].

A. Search Strategy

Since our view of literature through a notion of “source
code labeling” is not very common and the terminology
is inconsistent, we decided to try multiple different search
strategies and combine their results.

1) Manual Search: First, we performed a manual search
among all articles published in 8 journals and 4 conferences,
selected by the authors’ discretion (partially inspired by a list
in [4]). In this first part of the search process, arbitrary two
years (2009 and 2012 in our case) were selected, as suggested
by [5]. The journals of interest were:

• IEEE Transactions on Software Engineering (TSE),
• ACM Transactions on Software Engineering and Method-

ology (TOSEM),
• Computer Languages, Systems and Structures (COM-

LAN),
• Science of Computer Programming (SCP),
• Journal of Systems and Software (JSS),

• Empirical Software Engineering (ESE),
• Information and Software Technology (IST),
• Journal of Software: Evolution and Process (JSEP), for-

merly known as Journal of Software Maintenance and
Evolution (JSME),

and conferences:

• International Conference on Software Engineering
(ICSE),

• International Conference on Program Comprehension
(ICPC),

• Working Conference on Reverse Engineering (WCRE)
• and International Conference on Software Maintenance

(ICSM).

A Scopus1 query was constructed based on the criteria, the
results list was exported as a CSV file and inspected in a
spreadsheet processing program. A total of 1546 articles were
manually assessed based on titles and abstracts, resulting in a
list of 16 relevant articles.

2) Keyword Search: Continuing the methodology of Zhang
et al. [5], we inspected the terminology used in articles
obtained during the manual search and based on it, we
constructed and tried multiple keyword-based search queries.
The final Scopus query is as follows:

TITLE-ABS-KEY(
("source code" OR "program comprehension")

AND
("tagging" OR "enriching" OR "augmenting"
OR "labeling")

) AND SUBJAREA(COMP)
AND NOT SUBJAREA(bioc OR medi OR envi OR neur)

Basically, it searches the specified terms in titles, abstracts
and keywords of computer science literature, excluding inter-
disciplinary research. The search yielded 85 results, of which
6 were newly found relevant ones.

The methodology by Zhang et al. [5] prescribes trying
slightly different queries until one of them returns at least
80% of articles from the first (manual) phase. For the query
presented above, this number was far below 20%. Broadening
the terms caused the count of results to skyrocket. The number
of false positives was high, without a significant positive
impact on the relevant result count. For this reason, we decided
to leave the methodology and continue with other techniques.

3) References Search: We searched for all forward and
backward references of 22 articles collected so far. Again, we
used Scopus.

Backward references mean all articles cited in the “Refer-
ences” section of particular papers. They are generally older
than the article citing them. From 305 results, we considered
14 unique and relevant.

Forward references are articles for which a search engine
knows they cite a particular paper. This is useful to find newer
articles. Of 137 results, 3 were relevant and not yet found in
previous searches.

1http://www.scopus.com

4) Other Sources: Five more relevant articles were found
recursively in the references of articles found during the phase
of references search. Finally, we added three more papers
present in the authors’ personal bibliography.

B. Inclusion Criteria

During the selection process, a paper was considered rele-
vant if:

• it presented a new approach or tool to associate metadata
with pieces of source code,

• the purpose of these metadata was to improve program
comprehension

• and a form of presentation of these data to a programmer
was described.

Examples of excluded articles are papers describing a label-
ing algorithm without discussing how to present results to
developers, and purely empirical studies comparing existing
approaches.

C. Final Article List

From the 47 selected articles, 17 were just descriptions of
the same or similar idea in another research phase. Five were
considered irrelevant after skimming or reading the full text.

The final article list thus contains 25 articles. For an
overview, see Table II. Further details will be provided in
section IV.

D. Data Extraction

The full text of 25 relevant articles was read, carefully
watching for similar and distinguishing signs regarding source
code labeling. Succinct notes about each article were written
in a tabular form, gradually forming a taxonomy.

III. TAXONOMY

First, we will introduce our taxonomy, answering RQ2.
Similar to Dit et al. [6], articles (approaches) were evaluated
according to multiple criteria, called dimensions. For each
dimension, an article can belong to one or more attributes.

Our taxonomy has four dimensions: source, target, presen-
tation and persistence. For an overview, see Table I. Now we
will describe the dimensions and attributes in detail.

A. Source

A “source” dimension denotes where the metadata were
originally available before they were assigned to a part of
source code. The most problematic source is human mind.
In order to obtain information present only in the memory
of the programmer, he must manually enter these data into a
system for each artifact which should be labeled. The most
primitive kind of a label with a “source” of type human is
a traditional source code comment. The developer writes the
label – a natural language text easing program comprehension
– above a piece of code. The assignment of the comment to
a piece of code is therefore performed by its positioning.

Approaches categorized as code analyze the source code of
a system without executing it, i.e., using static analysis.

TABLE I
A SOURCE CODE LABELING TAXONOMY.

Dimension Attribute Description
Source human Manually entered information, previously present only in human mind.

code Results of static source code analysis.
runtime Results of the program execution; dynamic program analysis.
interaction Interaction patterns of a single developer in the IDE.
collaboration Collaboration artifacts of multiple developers like VCS commits or e-

mails.
Target folder A directory or a package.

file A file or a class.
multi-line A multi-line part of a file, e.g., a method.
line One line in a file, such as a variable declaration.
line part A character range, e.g., a method call.

Presentation code view The editable source code view is augmented with metadata.
existing view Other existing views in an IDE (e.g., a package explorer) are augmented.
separate view A separate view is created just to present the information of interest.

Persistence internal The metadata is stored directly in the source code file (e.g., using a
comment).

external A separate file, database or server is used to store the labels.
none/unknown The metadata are only presented to the user, but not stored; or a method

of persistence was not mentioned in the article.

Useful metadata can be collected by execution of the
program, using some form of dynamic analysis. These ap-
proaches are marked as runtime. The analyzed program must
be buildable (which is often a problem [7]) and automated
tests should be available (or the program must be executed
manually).

For tools utilizing the human source, a programmer must
purposefully enter the metadata with a sole intention that
they will improve program comprehension. This is expensive
on human resources. On the other hand, interaction data
are collected automatically, possibly without the developer
even knowing it (although that would be unethical). Using
heuristics, these tools can infer relationships between artifacts
from captured keystrokes, mouse actions, or even eye gazes
[8].

As software engineering is not an individual activity, col-
laboration artifacts are formed naturally as the team com-
municates and collaborates. These artifacts include e-mails,
instant messages, forum posts and VCS commit messages.
These artifacts are often poorly or nowise connected with the
relevant source code. The purpose of collaboration approaches
to code labeling is to fill this gap.

Many tools use a combination of multiple methods. For
example, a static analysis may be used to assign source
code artifacts their documentation; then a user must manually
confirm or reject the suggested links [9].

B. Target

The purpose of source code labeling is to assign metadata
to a particular piece of code. Subject of the “target” dimension
is what that “piece of code” means.

This is quite a problematic question, as there are two sepa-
rate views: file-based and element-based. Some tools assign
metadata to files, lines and character ranges. Other assign
them to classes, methods, variables, method calls, etc. These
views are often mixed in one tool. Furthermore, it is not clear
whether a code bookmark, labeling a line containing just a
variable declaration, relates to the line or to the declaration.
Therefore, we decided to mix the views in our taxonomy.

The attributes are sorted according to granularity. A folder
represents a package in some object-oriented languages. A
file often corresponds to a whole class. Method and function
definitions are multi-line elements. Elements considered line
include variable declarations. We decided to consider method
calls and variable usages line parts.

C. Presentation

Once the metadata were retrieved and associated with a
proper source code segment, it should be presented to the
developer in order to be useful.

One of the best places to show code-related data is obviously
the main, editable source code view of an IDE. This is the place
which draws the most attention of a programmer, occupies a
large screen portion and offers many existing features (e.g.,
code completion). The code editor can be augmented by
various coloring (see Fig. 1), visual overlays (like a box
surrounding a piece of code) or images. Harward et al. [10]
call them “in situ” visualizations. Syntax highlighting may be
considered a common visual augmentation [11]. We decided
to regard also gutter/ruler annotations (icons in the left or right
code editor margin) as a code view presentation.

Fig. 1. A simple example of code view presentation: DepDigger [12] uses
background coloring to indicate the understandability of source code parts
according to the dep-degree metric.

Except for the source code editor, modern IDEs offer
various supplemental views like Package Explorer, Favorites
or Class Hierarchy. Plugins can augment existing views by
additional information. For instance, packages and classes in
a tree view may be augmented by colored squares according
to a metric [13].

Some tools, despite associating a part of code with addi-
tional information, display the association in a separate view,
or even window. In a better case, clicking a particular widget in
this view automatically opens and focuses the code of interest
in the source code editor. Otherwise, the user must manually
open and find the code according to the displayed element
name.

D. Persistence

The association between the code and the label, and some-
times also the label data themselves, can be saved to a
permanent storage.

1) Rationale: There are three possible reasons for persis-
tence.

First, in the case of fully automated static code and col-
laboration-sourced techniques, the process of retrieving and
associating metadata can be resource-intensive. The storage
acts as a cache2.

Second, the runtime and interaction data are partially a
product of human work. Each program execution and IDE
interaction can be unique. It is therefore desirable to save
at least the data like traces or interaction logs. Once they
are persisted, the analysis and association process can be
performed every time when necessary.

Third, the persistence is an absolute requirement in the case
of human-sourced metadata. A tool must not repeatedly ask a
programmer to describe code, if exactly the same information
had already been entered for the same piece of code, using
the same tool.

2) Persistence Methods: The labels can be stored in a
source code file itself. The association with the target element
is thus implicit through the position of the label in the code. A
typical example of internal persistence method is a specially
formatted comment.

External persistence means labels are stored separately from
the source code file. They can be saved in an XML file, or a

2Suppose collaboration artifacts are already persisted in external systems.

database management system (DBMS), accessed either locally
or through a server.

Finally, the persistence method none/unknown denotes the
labels are either not stored permanently, or persistence was
not mentioned in a given article at all. If a tool produces only
reports or exports which cannot be subsequently loaded, it was
also incorporated into this category.

IV. APPROACHES AND TOOLS

In Table II, we can see an overview of all reviewed ap-
proaches and tools, which answers RQ1. Now we will briefly
describe each of them. The approaches will be grouped by
their primary “source”.

A. Human

A concern is a piece of information about a code element,
such as a feature it implements or a design decision [32]. Con-
cernMapper [14] is both an Eclipse plugin and a framework
to associate parts of programs with concerns, both through
a GUI (graphical user interface) and an API (application
programming interface).

The eMoose approach [15] allows tagging of API usage
directives, like state restrictions or locking, in JavaDoc com-
ments. Subsequent highlighting of calls to such methods in
an IDE improves awareness of programmers, who then spot
errors quickly.

Pollicino [16] is a plugin for collective code bookmarks,
providing a more feature-rich version of classical source code
bookmarks found in the majority of IDEs.

SE-Editor [17] makes it possible to embed web pages in
the source code editor of the Eclipse IDE. The web page is
embedded using a comment beginning with /*** , followed
by an URL. This might be useful to display code-related
diagrams, tutorial videos, etc.

Spotlight [18] is an IDE plugin to tag source code with
concerns. Each concern can be assigned a color, which is then
displayed in the left gutter (margin) of the source code editor.
Thanks to this, a programmer can more easily identify where
the given concern is located in the program.

TagSEA [19] integrates waypoints and social tagging into
the Eclipse IDE. Programmers note waypoints – places worth
marking and sharing – into the source code as comments in
the form //@tag tagname : message . Hierarchical tags
and metadata (author, date) are also supported. Collections of
waypoints can be connected into routes to create source code
guides.

B. Code

DepDigger [12] visualizes the measure (metric) dep-degree
by changing the background color of source code elements –
on a scale ranging from white to red – in a code view.

RegViz [20] visually augments a regular expression in-
place, without a need for a separate view. For example, groups
are underlined and labeled with a group number.

Stacksplorer [21] visualizes method’s callers in a column
on the left of the code editor view, callees in the right one.

TABLE II
LABELING APPROACHES AND TOOLS.

Article
Source Target Presentation Persistence

hu
m

an

co
de

ru
nt

im
e

in
te

ra
ct

io
n

co
lla

bo
ra

tio
n

fo
ld

er

fil
e

m
ul

ti-
lin

e

lin
e

lin
e

pa
rt

co
de

vi
ew

ex
is

tin
g

vi
ew

se
pa

ra
te

vi
ew

in
te

rn
al

ex
te

rn
al

no
ne

/u
nk

no
w

n

ConcernMapper [14] � � � � � � � � � � � � � � � �

eMoose [15] � � � � � � � � � � � � � � � �

Pollicino [16] � � � � � � � � � � � � � � � �

SE-Editor [17] � � � � � � � � � � � � � � � �

Spotlight [18] � � � � � � � � � � � � � � � �

TagSEA [19] � � � � � � � � � � � � � � � �

DepDigger [12] � � � � � � � � � � � � � � � �

RegViz [20] � � � � � � � � � � � � � � � �

Stacksplorer [21] � � � � � � � � � � � � � � � �

Traceclipse [22] � � � � � � � � � � � � � � � �

TraceME [9] � � � � � � � � � � � � � � � �

GUITA [23] � � � � � � � � � � � � � � � �

Impromptu HUD [11] � � � � � � � � � � � � � � � �

in situ profiler [1] � � � � � � � � � � � � � � � �

Senseo [13] � � � � � � � � � � � � � � � �

sparklines [24] � � � � � � � � � � � � � � � �

CnP [25] � � � � � � � � � � � � � � � �

HeatMaps [26] � � � � � � � � � � � � � � � �

iTrace [8] � � � � � � � � � � � � � � � �

Deep Intellisense [27] � � � � � � � � � � � � � � � �

Miler [28] � � � � � � � � � � � � � � � �

Rationalizer [29] � � � � � � � � � � � � � � � �

101companies [30] � � � � � � � � � � � � � � � �

Code Bubbles [31] � � � � � � � � � � � � � � � �

CoderChrome [10] � � � � � � � � � � � � � � � �

Graphical overlays may be shown to visually connect the
current method definition with the left column and method
calls in the source code view to items in the right column.

Traceclipse [22] and TraceME [9] are traceability manage-
ment recovery tools. They link source artifacts (like docu-
mentation) to the target artifacts (usually source code). In the
mentioned tools, the linking is performed based on the textual
similarity, using IR (information retrieval) methods.

C. Runtime

GUITA [23] annotates GUI-related method calls with GUI
snapshots of a selected widget at the time when this method
is called. This facilitates the navigation between the dynamic
user interface world and the static source code world.

The next three approaches belong to a group of “in situ
visualizations” – small graphical elements displayed directly
in the source code editor. Impromptu HUD [11] displays
a realtime clock-like visual near each scheduled function,

informing the programmer when the timing event will fire.
An in-situ profiler [1] shows small diagrams with runtime
performance information next to method declarations and
calls. Code sparklines [24] are small charts depicting values
of a particular numeric variable over time.

Senseo [13] gathers and displays dynamic information in
static views of an IDE. Information like methods’ callers,
callees, dynamic (overridden) argument types and return val-
ues are shown in a tooltip of a method in the code view.
Selected metrics like execution frequencies, object allocation
counts or memory consumption can be viewed in gutters/rulers
(using heatmaps) and the package explorer (numbers). Dy-
namic collaborators of packages, classes and methods, and
a Calling Context Ring Chart are displayed in a separate
view. A controlled experiment demonstrated an improvement
of maintenance correctness and speed when using Senseo [13].

D. Interaction

The CnP tool [25] proactively tracks, visualizes and sup-
ports editing of code clones in an IDE. Instead of a batch input
of source files, the tool captures copy and paste operations in
Eclipse.

HeatMaps [26] display artifacts with a background color
on a scale from blue to red, according to various numeric
values assigned to them. The values are, for example, the
recency and frequency of browsing and modification (obtained
by instrumenting an IDE), artifact age, and a version count.
The blue color means “cold” (e.g, least recently browsed), red
“hot”. The approach is general and can be potentially applied
in many tools and to various views in an IDE.

Interaction-sourced approaches are not limited to traditional
mouse and keyboard operations. iTrace [8] analyzes eye gazes
(using an eye tracker) in an IDE to infer traceability links
between artifacts.

E. Collaboration

Deep Intellisense [27] displays an interleaved list of relevant
bugs, commits, e-mails, specifications and other documents for
a given code element. Furthermore, a list of related people
is shown. The lists are updated each time a user clicks on
a code element, but they are displayed in a separate view.
Rationalizer [29] integrates similar information directly into
the code editor. On the right side of each source code line, it
shows three columns: when this line was last modified, who,
and why changed it. On the other hand, it processes only data
from a VCS and an issue tracker.

Miler [28] is a toolset to retrieve, process and associate e-
mail data to source code artifacts. E-mails are assigned to a
source code based on textual analysis. Information about e-
mails relevant to a class is displayed in the IDE’s package
explorer and rulers.

F. Mixed Approaches

The following approaches use multiple sources of informa-
tion, without any of them being dominant.

101companies [30] is a software chrestomathy – a collec-
tion of many implementations of one system using various
technologies, stored in a repository and linked with metadata.
Metadata like an implementation language, dependence on a
technology, features, and a highlighting renderer are assigned
to files or file fragments using a rule-based DSL (domain spe-
cific language). The assignment can be performed according
to criteria like a file extension, a regular expression for file
content, or even by a separate script [30]. For example, all
classes in files called “*.java”, ending with “Listener”, could
be assigned the “observer design pattern” label.

Code Bubbles [31] is a working-set based IDE using frag-
ments called bubbles instead of traditional file-based views.
It supports various forms of labeling, ranging from arrows
between method calls and definitions, to small images (e.g., a
literal “bug”) attachable to code bubbles.

CoderChrome [10] provides a generic framework for map-
ping between a metric and an in-situ augmentation. Examples

of such visual augmentations are background colors, glyphs
at the beginning or end of lines, and underlining. Metrics can
range from categorical to numeric ones, e.g.: a start or end
of a block, the last author, the property of having a primitive
type, the code age, and a line length.

V. CHALLENGES

To answer RQ3, we will now present observations and
lessons learned during the categorization and suggestions for
future research based on these observations.

A. Filtering Metadata Can Be Necessary

18 of the reviewed tools display various visual annotations
and overlays directly in the source code view. Although the
idea of tight integration of the source code and metadata is
appealing, let us perform a thought experiment: Imagine these
18 approaches are implemented as plugins of one IDE, all in-
stalled and enabled at the same time. The amount of metadata
could overwhelm the developer, causing more harm than good.
It would be interesting to substantiate the thought experiment
and perform a real case study with actual plugins. However,
since many plugins are unstable academic projects and they are
implemented for various IDEs, a reimplementation of many of
them would be required.

Suppose the study showed us the amount of metadata
is overwhelming. One option to tackle this is to turn the
plugins on and off manually each time the developer needs a
particular kind of information. This interrupts the programmer
and causes additional mental overhead. Therefore, we can
expect the majority of tools would not be used at all.

Ideally, the relevant metadata would be shown only when it
is necessary. Each tool should formally provide a list of source
code characteristics, task kinds and other relevance indicators
– in which situations and contexts is this tool useful. The
IDE would then calculate numerical relevance based on these
characteristics and display only metadata with a relevance
higher than a given threshold.

B. Evolution Needs to Be Taken into Account

Both the source code and metadata evolve over time.
Each “persistence” type has its advantages and disadvantages
regarding evolution.

If a piece of metadata is stored using internal persistence,
it is pushed to a VCS each time it is updated. This can
cause unnecessary overhead during collaboration – e.g., during
merging. On the other hand, if the source code itself changes
(and the metadata remains valid), there is no referencing
problem.

When using external storage, the target code part must be
explicitly referenced. The most primitive example is referenc-
ing by a line number. However, as the source code file content
changes with each revision, the original line number may no
longer contain the same element. Reiss [33] compared various
methods for tracking source code locations, e.g., storing an
exact line content, a context of a few lines around the line,
AST matching, a diff-based approach, and their combinations.

While some combinations of methods achieve correctness
above 97%, none of them is 100% accurate. Furthermore, the
performance (space to store the reference and time to compute
it) must be taken into account.

Using neither internal nor external storage solves the prob-
lem with evolution. However, it is generally advisable only
for the code source (static analysis). For example, not storing
metadata from dynamic analysis causes data loss as soon as
the tool is closed.

In the reviewed articles, the effects of evolution, especially
what happens if the source code itself changes, were rarely
discussed. Empirical evaluations of tools taking evolution into
account are necessary.

C. What If Source Code Was Updated by Tools?

One particularly interesting observation can be made by
looking at patterns in Table II. All approaches using internal
persistence use purely human source of information. This
means that automated tools do not write metadata to the source
code files themselves.

We investigated this matter and described preliminary ap-
proaches which write the results of dynamic and static analysis
directly into the source code, e.g., in a form of Java annotations
[34], [35]. Another example is our recent prototype of a tool
writing automatically generated Javadoc comments directly
into source code files [36]. The mentioned approaches have
advantages and drawbacks already mentioned in section V-B.

An interesting way to utilize internal persistence for non-
human sources would be for IDE-independent program com-
prehension tools. A tool would temporarily annotate the source
code with metadata, using annotations or comments. There-
fore, they will be viewable with any IDE or even a simple
text editor. Then, just before committing the modified source
code to a VCS (or even sooner, when the developer would
not need the metadata for comprehension anymore), the tool
would remove the metadata, so the source code would remain
clean. A disadvantage of this approach is its limitation only
to textual metadata.

VI. THREATS TO VALIDITY

The set of articles included in this study is by no means
complete. Nevertheless, due to a large number of papers
pertaining to a research area, collecting all related articles
is often unrealistic and it is just important for the selected
subset to be representative with respect to the research field
[2]. We did not attempt to collect all available evidence – our
main goals were to present at least a portion of approaches
and tools using a preliminary mapping study, construct the
taxonomy, and portray future challenges.

One could argue that the whole search process relies on
one search resource – Scopus. However, during backward
references search, also papers not indexed by Scopus were
returned (secondary documents in their terminology).

Although the oldest included articles are from 2005, the
selection was not artificially limited to any specific date.

Article selection and data extraction were performed by
a sole researcher, which could produce biased results based
on subjective decisions. Brereton et al. [37] suggest either
independent extraction by at least two researchers and then
a comparison of results, or checking the data afterward. In
case of the lack of resources, a random sample of data may
be cross-checked [3].

This paper is focused on tools presented in academic arti-
cles. However, there exist many industrial tools not described
in papers, which could be also worthwhile to describe.

VII. RELATED WORK

The research area of feature location partially overlaps with
source code labeling – features can be considered one of
possible source code labels. Dit et al. [6] reviewed 89 feature
location techniques and classified them into a taxonomy. Our
“source” dimension is similar to their “type of analysis”;
and “target” to “output”. On the other hand, we were more
concerned about the presentation and persistence.

The runtime source in our taxonomy indicates a use of
various dynamic analysis approaches. Cornelissen et al. [38]
reviewed 176 articles related to dynamic source code analysis.
However, labeling parts of source code with obtained informa-
tion was out of the scope of the mentioned survey.

The goal of traceability research [39] is to allow following
links among various forms of software artifacts. Often the
target artifact is source code, just as in the case of source code
labeling. Two traceability tools, Traceclipse [22] and TraceME
[9], were included in this mapping study.

In software engineering, recommendation systems [40] sug-
gest relevant information based on the developer’s context. The
context can be implicit (e.g., IDE history), explicit (a query)
or a combination of them. Robillard et al. [41] recognized
multiple design dimensions of recommendation systems. Their
“data” dimension is similar to our “source”. They also recog-
nized the “presentation” dimension, but in their case, it has
values batch and inline.

Software artifact summarization [42] aims to create shorter
descriptions from longer pieces of code, bug reports, mail-
ing lists and discussions. In this sense, summaries can be
considered source code labels obtained from the code and
collaboration sources.

Source code labeling with the collaboration source often
seeks to improve workspace awareness [43] – knowledge of
the tasks and artifacts of others in a distributed software
development team.

VIII. CONCLUSION AND FUTURE WORK

In this systematic mapping study, 2,091 articles were as-
sessed in total (including duplicates), from which 25 unique
and relevant articles were selected and briefly described. A
taxonomy of source code labeling containing four dimensions
was created by the analysis of the articles.

Thanks to this survey, researchers can both get a quick
overview of many source code labeling approaches, and find
interesting future research directions by analyzing the gaps.

IDE developers can use it as an inspiration about which
features to implement in their product. Practitioners struggling
to analyze existing large codebases may find information about
available tools and approaches here.

We identified three main challenges in the area of source
code labeling. First, it will be necessary to filter the metadata
displayed directly in the source code view only to the most
relevant information – to prevent visual clutter. Second, the
evolution of both source code and metadata need to be
taken into account when designing tools. Finally, writing the
metadata directly into source code files could be promising if
implemented properly.

Note that some of the approaches described here are already
implemented in industrial IDEs. Furthermore, there exist some
features of commercial IDEs not described here. It would be
interesting to compare code labeling features of common IDEs
and academic tools.

This paper provided only a high-level qualitative overview
of the topic. More in-depth analysis, like the quantification
of the amount of necessary human work for each approach,
is left as future work. We can also introduce more taxonomy
dimensions and attributes.

REFERENCES

[1] F. Beck, O. Moseler, S. Diehl, and G. Rey, “In situ understanding of
performance bottlenecks through visually augmented code,” in Program
Comprehension (ICPC), 2013 IEEE 21st International Conference on,
May 2013. doi: 10.1109/ICPC.2013.6613834 pp. 63–72.

[2] K. Petersen, S. Vakkalanka, and L. Kuzniarz, “Guidelines for conduct-
ing systematic mapping studies in software engineering: An update,”
Information and Software Technology, vol. 64, p. to appear, 2015. doi:
10.1016/j.infsof.2015.03.007

[3] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University and
Durham University Joint Report, Technical Report EBSE-2007-01, Jul.
2007. [Online]. Available: http://community.dur.ac.uk/ebse/guidelines.
php

[4] D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanović,
N.-K. Liborg, and A. Rekdal, “A survey of controlled experiments in
software engineering,” Software Engineering, IEEE Transactions on,
vol. 31, no. 9, pp. 733–753, Sep. 2005. doi: 10.1109/TSE.2005.97

[5] H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, vol. 53,
no. 6, pp. 625–637, 2011. doi: 10.1016/j.infsof.2010.12.010 Special
Section: Best papers from the APSECBest papers from the APSEC.

[6] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, “Feature location
in source code: a taxonomy and survey,” Journal of Software: Evolution
and Process, vol. 25, no. 1, pp. 53–95, 2013. doi: 10.1002/smr.567

[7] M. Sulír and J. Porubän, “A quantitative study of Java software buildabil-
ity,” in Proceedings of the 7th International Workshop on Evaluation and
Usability of Programming Languages and Tools, ser. PLATEAU 2016.
New York, NY, USA: ACM, 2016. doi: 10.1145/3001878.3001882 pp.
17–25.

[8] B. Walters, M. Falcone, A. Shibble, and B. Sharif, “Towards an eye-
tracking enabled IDE for software traceability tasks,” in Traceability in
Emerging Forms of Software Engineering (TEFSE), 2013 International
Workshop on, May 2013. doi: 10.1109/TEFSE.2013.6620154 pp. 51–54.

[9] G. Bavota, L. Colangelo, A. De Lucia, S. Fusco, R. Oliveto, and
A. Panichella, “TraceME: Traceability management in eclipse,” in Soft-
ware Maintenance (ICSM), 2012 28th IEEE International Conference
on, Sep. 2012. doi: 10.1109/ICSM.2012.6405343 pp. 642–645.

[10] M. Harward, W. Irwin, and N. Churcher, “In situ software visualisation,”
in Software Engineering Conference (ASWEC), 2010 21st Australian,
Apr. 2010. doi: 10.1109/ASWEC.2010.18 pp. 171–180.

[11] B. Swift, A. Sorensen, H. Gardner, and J. Hosking, “Visual code
annotations for cyberphysical programming,” in Live Programming
(LIVE), 2013 1st International Workshop on, May 2013. doi:
10.1109/LIVE.2013.6617345 pp. 27–30.

[12] D. Beyer and A. Fararooy, “DepDigger: A tool for detecting com-
plex low-level dependencies,” in Program Comprehension (ICPC),
2010 IEEE 18th International Conference on, Jun. 2010. doi:
10.1109/ICPC.2010.52 pp. 40–41.

[13] D. Röthlisberger, M. Härry, W. Binder, P. Moret, D. Ansaloni, A. Vil-
lazón, and O. Nierstrasz, “Exploiting dynamic information in IDEs im-
proves speed and correctness of software maintenance tasks,” Software
Engineering, IEEE Transactions on, vol. 38, no. 3, pp. 579–591, May
2012. doi: 10.1109/TSE.2011.42

[14] M. P. Robillard and F. Weigand-Warr, “ConcernMapper: Simple view-
based separation of scattered concerns,” in Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology eXchange, ser. eclipse ’05.
New York, NY, USA: ACM, 2005. doi: 10.1145/1117696.1117710 pp.
65–69.

[15] U. Dekel and J. Herbsleb, “Improving API documentation usabil-
ity with knowledge pushing,” in Software Engineering, 2009. ICSE
2009. IEEE 31st International Conference on, May 2009. doi:
10.1109/ICSE.2009.5070532 pp. 320–330.

[16] A. Guzzi, L. Hattori, M. Lanza, M. Pinzger, and A. van Deursen,
“Collective code bookmarks for program comprehension,” in Program
Comprehension (ICPC), 2011 IEEE 19th International Conference on,
Jun. 2011. doi: 10.1109/ICPC.2011.19 pp. 101–110.

[17] P. Schugerl, J. Rilling, and P. Charland, “Beyond generated software
documentation – a Web 2.0 perspective,” in Software Maintenance,
2009. ICSM 2009. IEEE International Conference on, Sep. 2009. doi:
10.1109/ICSM.2009.5306385 pp. 547–550.

[18] M. Revelle, T. Broadbent, and D. Coppit, “Understanding concerns in
software: insights gained from two case studies,” in Program Compre-
hension, 2005. IWPC 2005. Proceedings. 13th International Workshop
on, May 2005. doi: 10.1109/WPC.2005.43 pp. 23–32.

[19] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,”
in Proceedings of the 2006 20th Anniversary Conference on Computer
Supported Cooperative Work, ser. CSCW ’06. New York, NY, USA:
ACM, 2006. doi: 10.1145/1180875.1180906 pp. 195–198.

[20] F. Beck, S. Gulan, B. Biegel, S. Baltes, and D. Weiskopf, “RegViz:
Visual debugging of regular expressions,” in Companion Proceedings
of the 36th International Conference on Software Engineering, ser.
ICSE Companion 2014. New York, NY, USA: ACM, 2014. doi:
10.1145/2591062.2591111 pp. 504–507.

[21] T. Karrer, J.-P. Krämer, J. Diehl, B. Hartmann, and J. Borchers,
“Stacksplorer: Call graph navigation helps increasing code maintenance
efficiency,” in Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’11. New York, NY, USA:
ACM, 2011. doi: 10.1145/2047196.2047225 pp. 217–224.

[22] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk, “Traceclipse: An
Eclipse plug-in for traceability link recovery and management,” in Pro-
ceedings of the 6th International Workshop on Traceability in Emerging
Forms of Software Engineering, ser. TEFSE ’11. New York, NY, USA:
ACM, 2011. doi: 10.1145/1987856.1987862 pp. 24–30.

[23] A. L. Santos, “GUI-driven code tracing,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2012 IEEE Symposium on, Sep.
2012. doi: 10.1109/VLHCC.2012.6344495 pp. 111–118.

[24] F. Beck, F. Hollerich, S. Diehl, and D. Weiskopf, “Visual monitoring of
numeric variables embedded in source code,” in Software Visualization
(VISSOFT), 2013 First IEEE Working Conference on, Sep. 2013. doi:
10.1109/VISSOFT.2013.6650545 pp. 1–4.

[25] D. Hou, P. Jablonski, and F. Jacob, “CnP: Towards an environment for
the proactive management of copy-and-paste programming,” in Program
Comprehension, 2009. ICPC ’09. IEEE 17th International Conference
on, May 2009. doi: 10.1109/ICPC.2009.5090049 pp. 238–242.

[26] D. Röthlisberger, O. Nierstrasz, S. Ducasse, D. Pollet, and R. Robbes,
“Supporting task-oriented navigation in IDEs with configurable
HeatMaps,” in Program Comprehension, 2009. ICPC ’09. IEEE 17th In-
ternational Conference on, May 2009. doi: 10.1109/ICPC.2009.5090052
pp. 253–257.

[27] R. Holmes and A. Begel, “Deep Intellisense: A tool for rehydrating evap-
orated information,” in Proceedings of the 2008 International Working
Conference on Mining Software Repositories, ser. MSR ’08. New York,
NY, USA: ACM, 2008. doi: 10.1145/1370750.1370755 pp. 23–26.

[28] A. Bacchelli, M. Lanza, and M. D’Ambros, “Miler: A toolset for ex-
ploring email data,” in Proceedings of the 33rd International Conference
on Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011. doi: 10.1145/1985793.1985984 pp. 1025–1027.

[29] A. W. Bradley and G. C. Murphy, “Supporting software history ex-
ploration,” in Proceedings of the 8th Working Conference on Mining
Software Repositories, ser. MSR ’11. New York, NY, USA: ACM,
2011. doi: 10.1145/1985441.1985469 pp. 193–202.

[30] J.-M. Favre, R. Lämmel, M. Leinberger, T. Schmorleiz, and A. Vara-
novich, “Linking documentation and source code in a software
chrestomathy,” in Reverse Engineering (WCRE), 2012 19th Working
Conference on, Oct. 2012. doi: 10.1109/WCRE.2012.43 pp. 335–344.

[31] A. Bragdon, S. P. Reiss, R. Zeleznik, S. Karumuri, W. Cheung, J. Kaplan,
C. Coleman, F. Adeputra, and J. J. LaViola, Jr., “Code Bubbles: Re-
thinking the user interface paradigm of integrated development environ-
ments,” in Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering - Volume 1, ser. ICSE ’10. New York, NY,
USA: ACM, 2010. doi: 10.1145/1806799.1806866 pp. 455–464.

[32] M. Sulír, M. Nosál’, and J. Porubän, “Recording concerns in source code
using annotations,” Computer Languages, Systems & Structures, vol. 46,
pp. 44–65, Nov. 2016. doi: 10.1016/j.cl.2016.07.003

[33] S. P. Reiss, “Tracking source locations,” in Proceedings of the 30th
International Conference on Software Engineering, ser. ICSE ’08. New
York, NY, USA: ACM, 2008. doi: 10.1145/1368088.1368091 pp. 11–20.

[34] M. Sulír and J. Porubän, “Semi-automatic concern annotation using
differential code coverage,” in 2015 IEEE 13th International Scien-
tific Conference on Informatics, Nov. 2015. doi: 10.1109/Informat-
ics.2015.7377843 pp. 258–262.

[35] M. Sulír and J. Porubän, “Exposing runtime information through source

code annotations,” Acta of Electrotechnica et Informatica, vol. 17, no. 1,
pp. 3–9, Apr. 2017.

[36] M. Sulír and J. Porubän, “Generating method documentation using
concrete values from executions,” in 6th Symposium on Languages,
Applications and Technologies (SLATE’17), 2017.

[37] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571–583, 2007. doi: j.jss.2006.07.009

[38] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” Software Engineering, IEEE Transactions on, vol. 35,
no. 5, pp. 684–702, Sep. 2009. doi: 10.1109/TSE.2009.28

[39] S. Winkler and J. Pilgrim, “A survey of traceability in requirements
engineering and model-driven development,” Softw. Syst. Model., vol. 9,
no. 4, pp. 529–565, Sep. 2010. doi: 10.1007/s10270-009-0145-0

[40] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann, Eds.,
Recommendation Systems in Software Engineering. Springer Publishing
Company, Incorporated, 2014.

[41] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation sys-
tems for software engineering,” IEEE Software, vol. 27, no. 4, pp. 80–86,
Jul. 2010. doi: 10.1109/MS.2009.161

[42] N. Nazar, Y. Hu, and H. Jiang, “Summarizing software artifacts: A
literature review,” Journal of Computer Science and Technology, vol. 31,
no. 5, pp. 883–909, 2016. doi: 10.1007/s11390-016-1671-1

[43] I. Steinmacher, A. P. Chaves, and M. A. Gerosa, “Awareness support
in distributed software development: A systematic review and mapping
of the literature,” Comput. Supported Coop. Work, vol. 22, no. 2-3, pp.
113–158, Apr. 2013. doi: 10.1007/s10606-012-9164-4

