
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works. This is the accepted version of: M. Sulír, J. Porubän. Designing voice-controllable APIs. 2019 IEEE 15th
International Scientific Conference on Informatics, pp. 393–398. http://doi.org/10.1109/Informatics47936.2019.9119302

Designing Voice-Controllable APIs
Matúš Sulír, Jaroslav Porubän

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Košice
Košice, Slovakia

{matus.sulir, jaroslav.poruban}@tuke.sk

Abstract—The main purpose of a voice command system is
to process a sentence in natural language and perform the
corresponding action. Although there exist many approaches
to map sentences to API (application programming interface)
calls, this mapping is usually performed after the API is already
implemented, possibly by other programmers. In this paper, we
describe how the API developer can use patterns to map sentences
to API calls by utilizing the similarities between names and types
in the sentences and the API. In the cases when the mapping is
not straightforward, we suggest the usage of suitable annotations
(attribute-oriented programming).

Index Terms—application programming interface (API), meth-
ods, parameters, voice control, natural language commands

I. INTRODUCTION

Voice control is slowly becoming a mainstream form of
human-computer interaction. For this reason, developers often
integrate voice control into the applications being developed.
In this article, we will focus on simple, one-sentence com-
mands after which we expect the computer to perform the
desired action. Such a process consists of two main parts [1]:
the translation of the voice input to a natural language sentence
and the selection of an appropriate action according to the
meaning of the sentence. In this paper, we suppose the voice
recognition is implemented by a third-party library or service.
Therefore, we will focus on the second part: the mapping of
a sentence to the desired action.

Since we are interested in the implementation of the voice
control from the developer’s view, by an action we mean a call
to an appropriate method in an API (application programming
interface) with correct parameters. There already exist many
approaches to map a natural language sentence to API calls.
Some of them utilize probabilistic grammars and heuristics
[2], others perceive phrases only as lists of keywords [3]. An
increasingly popular approach is the application of machine
learning to translate natural language sentences to API snippets
[4].

The common sign of these approaches is that they perceive
voice control only as an afterthought – when the API is
already implemented, probably by other developers. In contrast
to them, we will show how the API can be tailored to be
voice-controllable, predominantly by exploiting the similarity
of names and data types used in the sentences and the API.
For example, a sentence “open the door for 5 seconds” could
be interpreted as a call to door.open(5) during the execution
of a program, provided there is a method void open(int

seconds) in the class Door. When such similarities are not
observed, we suggest utilizing annotations (attribute-oriented
programming) to specify the necessary details of the sentence-
to-API mapping.

Throughout the paper, we also discuss how such APIs could
be analyzed by a voice command recognition framework,
which would then execute an appropriate action given a natural
language sentence. A prototype implementation of such a
framework, supporting many of the described features, is
available online1.

II. MAPPING PATTERNS

In this section, we will gradually describe individual pat-
terns of mapping between a natural language sentence and an
API call. Our examples will be related mainly to the hardware
device control domain, but it is not restricted to it. Although
we will use Java, the approach is generally applicable to
any object-oriented programming language with sufficient
metaprogramming features, static typing is also helpful for
some patterns.

A. Verbatim Name Mapping

Suppose we would like to turn on light in a room after
saying “turn on light”. The most primitive way to map this
voice command to a method in the API would be to name the
method turnOnLight and annotate it with a marker annotation
VoiceControllable, so our framework could recognize it as a
voice-controllable function:

@VoiceControllable
public static void turnOnLight() {

// implementation turning on the light...
}

The name of the method would be split into individual words
and transformed to lowercase. Using exact string matching,
the input “turn on light” could be then mapped to this method,
which would be executed without any parameters.

Of course, having one class with many static methods is
a bad programming practice. Therefore, suppose we have
separate classes to control lights, monitors, speakers, and
other devices. For simplicity, let us say these classes are
named LightService, MonitorService, etc. In modern appli-
cation frameworks, service constructors are usually not called

1https://github.com/sulir/voice-control-demo

manually – the framework initializes them using techniques
such as dependency injection. Thus we will assume we have
an instance of every necessary class readily available and we
will focus on calling methods of this object. We can transform
the previous example to this code:

@VoiceControllable
public class LightService {

public void turnOn() {
// implementation turning on the light...

}
}

The annotation over a class means all its methods are
now “voice-controllable”. Our framework searches for all
such classes and their methods, building potential command-
to-method mappings. Since Service is an implementation-
oriented name irrelevant to the problem domain [5], our
framework strips it from the class name when scanning it.
The rest of the class name is appended to the method names.
Therefore, the turnOn method of class LightService will be
called when the command “turn on light” is issued.

B. Minor Variations

Since natural language is not restricted to exact phrases,
we must count with some variations in the commands. First,
we should stem all words in both the command and the
class/method names using an appropriate stemmer. This way,
we allow for variation in individual words since only their
root forms are compared. For example, the command “turn on
lights” can now execute the aforementioned method, even if
“Light” is singular in the class name.

Next, we should allow permutations of the words. For
example, “turn on lights” can be expressed also as “turn
lights on”. In general, we need to find a compromise between
allowing all permutations (which allows diverse sentences at
the price of higher ambiguity) and supporting only certain
kinds of permutations.

We can also allow extraneous words to be present in the
command. Typical examples include stop words (“the” in “turn
on the light”) or courtesy phrases (“please turn on the light”).
An extreme example is the sentence “Please be so kind and
turn on the light, dear.” As long as the extraneous words are
not contained in the names in our API, we can safely remove
them from the sentence without any ambiguity. To enable more
precise decisions, we can annotate the method with words we
expect to encounter in the command. For example, we would
like to execute the method turnOff by the command “turn off
all lights”:

@ExtraWord("all")
public void turnOff() { ... }

A similar case is the non-presence of certain words from
API names in the natural language command. For instance,
the command “light off” does not contain the word “turn”
from the method LightService::turnOff. To help the mapping
system to make a correct decision, we can annotate the method
with @OptionalWord("turn").

By allowing all of the mentioned variations at once, we
can achieve a system which is highly flexible and accepts a
wide range of different sentences – at the price of potential
ambiguity. Essentially, the framework should find a method in
the API which has the highest number of words common with
the input. When there are ties or the number of common words
is too low, we can start taking the ExtraWord and OptionalWord

annotations into account. If the situation is still indecisive, the
voice assistant can simply list the most probable options and
ask the person to select one of them.

C. Parameters

Now we will take into account methods with parameters.
The simplest case is a method with one numeric parameter:

public void turnOn(int number) { ... }

Typical commands to execute this method are: “turn on light
number 1” and “turn on light 1”. In the first sentence, the
argument value follows the parameter name “number”, which
means the argument can be matched by its name. In the
second case, the parameter is matched only by its type – the
input sentence contains a number and the API method has a
numerical parameter.

Mapping enum-typed parameters is straightforward too.
Suppose Position is defined as an enumeration:

public enum Position {
LEFT, MIDDLE, RIGHT

}

We also have a method with a Position parameter:

public void turnOn(Position position) { ... }

Then this method can be called by the command “turn on the
left light”. On the other hand, mapping of string parameters
is more problematic:

public void turnOn(String name) { ... }

If the user says “turn on the light named ‘front’”, the system
can use the matching based on parameter names. However,
mapping the sentence “turn on the front light” to this method
is questionable in general, since we do not have any way to
enumerate all possible valid values of a String parameter. A
potentially dangerous way to determine if this method matches
the command is trying to execute it and observing if it does
not throw an exception. There exist better ideas, though. If
the list of valid values is fixed at a compile time, it can be
supplied directly:

public void turnOn(
@Values({"front", "back"}) String name

) { ... }

In such cases, however, it is much better to use enumerations
instead. Most often, the set of valid values can be enumerated
only at runtime. Then we can create a class with a method
returning these values:

public class LightNames implements ValueSet<String> {
public Set<String> getValues() {

return configuration.getValidLightNames(...);

}
}

Subsequently, we connect this list with a parameter using an
annotation:

public void turnOn(
@ValidValues(LightNames.class) String name

) { ... }

Now we will consider parameters of any class in general,
e.g., a parameter of type Color:

public void setColor(Color color) { ... }

In the command “set light color to green”, we do not know
how to map “green” to Color(0, 255, 0). It is possible
that Color has a constructor accepting a string, in which
case we can utilize it. However, this still does not solve the
problem of the enumeration of all valid values described in
the previous example. Therefore, we suggest using a string-
to-object mapping via annotations. Each parameter of a custom
class should be annotated with a mapper:

public void setColor(
@StringMapping(ColorMapper.class) Color color

) { ... }

Then the ColorMapper class can look like this:

public class ColorMapper
implements StringMapper<Color> {

public Map<String, Color> getMap() {
return Map.of(

"red", new Color(255, 255, 0),
"green", new Color(0, 255, 0),
...

);
}

}

This way, we can both enumerate all possible values of a
Color-typed parameter and map a string such as “green” to
a Color object. The approach is not limited to a constant
associative array of string–color pairs: the mapping could be
also dynamically generated by arbitrarily complicated code.
Note that since the mapping is specified in a separate class,
we did not modify the original Color class in any way – it can
be defined in a third-party library without problems.

Next, we consider a method with multiple parameters:

public void setColor(int number, Color color) { ... }

As long as the parameters are of distinct types and the sets of
valid values of all types are disjunctive, we can map various
commands to a method execution without too much ambiguity:
e.g., “set light 3 to blue”, “I would like yellow color for light
4”. However, methods with multiple parameters of same or
similar type are more problematic:

public void setBrightness(int light, double brightness)
{ ... }

Here, “set light 1 to brightness 50” can be mapped to a correct
execution using the parameter names. However, the sentence
“set brightness of light number 2 to 30” could be probably

mapped only by the position of arguments, which would not
work correctly if the parameters were switched in the API.

Note that parameters have an important role in the process
of the API method selection. Since it is not valid to call a
method without all mandatory (non-null) arguments filled, they
must be all present in the input sentence. For example, if the
command does not contain any number, we can assume it does
not match any method with a numeric parameter.

D. Collections
Suppose we want to dim multiple lights at once. A collec-

tion, such as a set, is an ideal candidate for this:
public void dim(Set<Integer> lights) { ... }

The content of the parameter lights can be expressed by
enumerating all values or by specifying a range: “dim lights 1,
7 and 9” or “dim lights 6 to 10”. In case the expected range can
be very large, we recommend using a lazy collection denoted
by an interface, such as Iterable<Integer>.

Similarly to numeric collections, we accept collections of
enumerations or other classes:
public void dim(Set<Position> lights) { ... }

Naturally, ranges are not supported in such cases. We can still
fill this set with values by naming them all, though: “dim the
left and middle light”. Alternatively, commands such as “dim
all lights” should work if there is a way to enumerate all valid
values of the parameter programmatically.

E. Synonyms
Many words have synonyms which can a user utter instead

of the words used in the API names. A natural way to
cope with such situations is the usage of thesauri and lexical
databases such as WordNet [6]. Any word in the API can
be then replaced by its synonym to perform a successful
match with the natural language command. However, consider
the following example of a method in class ScreenService

(controlling a multi-monitor ambient user interface [7]), where
State is an enumeration with values ON and OFF:
public void set(int screen, State state) { ... }

We would certainly like to say not only “set screen 1 to ‘on’”
but also “turn screen 1 on”. However, “turn” is not a synonym
of “set” in general – only in this specific case. Therefore,
we devised a way to specify method-local synonyms via
annotations:
@Synonym(of = "set", is = "turn")
public void set(int screen, State state) { ... }

This synonym can be applied only during the matching of
this particular method. Analogously, we support package-local,
class-local and parameter-local synonyms using annotations
over packages (in a special file package-info.java), classes,
and parameters, respectively. It is also allowed to specify
multiple synonyms per element, e.g.:
@Synonym(of = "screen", is = {"display", "monitor"})
@Synonym(of = "turn", is = "switch")
public class Screen { ... }

F. Fallback

If we encounter difficulties during the application of the
aforementioned mapping patterns, we can always specify
the voice commands manually. For example, suppose we
have a class SpeechService with a method pronounce(String

sentence) which says out loud the given sentence. Since the
sentence can be completely arbitrary, matching will likely
fail. Therefore, we specify the voice command as a regular
expression:

@VoiceCommand("say (.*)")
public void pronounce(String sentence) { ... }

The content of the group in the parentheses will be supplied
as a parameter value. Because a manually specified command
has a high priority, we can successfully match commands such
as “say ‘I like turning off the screens’” even when they contain
words present in the API.

III. MAPPING PROCESS

In our prototype implementation2, we decided to use a
simple sentence recognition algorithm designed to allow for
relatively large deviations of the input sentences from the
prescribed forms. Now we will briefly describe it.

First, the input sentence is matched against all fallback
regular expressions (section II-F). If a match is found, the
process is stopped and the annotated method is executed.

Next, for each voice-controllable method, we try to type-
match all its parameters with the sentence. For example, if
a method has a numeric parameter and a Color enumeration
parameter, the sentence is searched for a numeral and a word
denoting a color. The result is a list of potentially matching
methods, along with word-to-parameter mappings.

For each method in this list, a score of similarity with the
input sentence is calculated: Let WM be the set of words
contained in the class and method name. Let WS be the set of
words contained in the input sentence, excluding the parameter
values matched in the previous steps. The score is computed
as the Jaccard index [8] of these two sets:

|WM ∩WS |
|WM ∪WS |

If the class or method is annotated by synonyms, multiple
variants of the set WM are constructed, with the words
in the identifiers gradually replaced by their corresponding
synonyms. The resulting score is a maximum of the scores
computed for individual variants.

Finally, the method with the highest score is executed. If
multiple methods have the same score or if no method receives
a score higher than a certain threshold (e.g., 0.2), the user
should be asked to reformulate the command.

It is important to note that the described algorithm is not
the only one possible. The ideas described in the previous
section are compatible, for instance, with strict regex-based
solutions based on the precise matching of sentences with
regular expressions generated from the identifier names and

2https://github.com/sulir/voice-control-demo

annotations. Another possibility is a grammar-based approach,
which would distinguish parts of sentences: Some of them
could be derived automatically if possible, the rest will be
determined by manually written annotations.

IV. RELATED WORK

Many approaches mapping sentences to API calls are
grouped under the umbrella term of program synthesis, par-
ticularly program synthesis using natural language input [9].
Desai et al. [10] synthesize source code written in various
domain-specific languages, thanks to a dataset of sentence–
code pairs used for training. Gvero and Kuncak [2] synthesize
Java expressions using probabilistic grammars and heuristics.
In T2API, Nguyen et al. [4] perceive program synthesis as a
statistical translation process from natural language to a pro-
gramming language. Little and Miller [11] generate Java code
from a set of brief keywords. Some synthesis approaches are
focused on particular domains or technologies: e.g., SQL query
generation [12], smartphone automation script synthesis [13],
bot API invocations [14]. All of the mentioned approaches
perceive APIs as black boxes, which are already designed. In
contrast to them, our idea is to engage the API designers in
the process of natural language command specification.

Landhäußer et al. [15] designed NLCI (natural language
command interpreter), which has a goal similar to ours –
to perform an action in the API, given a natural language
sentence as an input. In contrast to us, they first transform the
API into an ontology by analyzing the relationships between
elements in the code and combining it with a general-purpose
ontology. Furthermore, they do not support simple mapping
customization via annotations.

The command execution approach by Little and Miller [3]
is based on the similarity of names used in the sentence and
the API. They also perceive sentences as lists of keywords,
allowing for variations such as extraneous words. However,
they do not allow any customization using annotations, since
they consider APIs to be developed by a third party and thus
not modifiable.

Naturalistic programming [16] is a paradigm aiming to
make the source code look more like natural language. For
example, Knöll et al. [17] discuss naturalistic types which
include the mapping of natural language quantities such as
“nearly all” to exact numeric intervals. Compared to them,
we aim to integrate voice control with existing, traditional
programming languages instead of designing new ones.

There exist guidelines on how to design APIs in general
[18] and an overview of design decisions to be made when
creating an API [19]. Nevertheless, none of these works take
voice-controllability into account.

Hirzel et al. [20] describe an idea of grammars for dialog
systems, including virtual voice assistants. However, they do
not try to solve the problem of the mapping of sentences to
API calls.

Commercial system APIs, such as Google Voice Actions
for Android3 or SiriKit 4 are often limited to certain domains
and action types. Furthermore, they require some effort to
integrate, such as the creation of configuration files or im-
plementation of non-trivial interfaces.

YAJCo [21] is a parser generator utilizing the similarity
between the relations of program elements in Java source files
and production rules of computer language grammars. The
core ideas behind this article stemmed from YAJCo, however,
this time they are applied to natural languages.

V. CONCLUSION AND FUTURE WORK

In this paper, we described patterns of mapping between
a natural language command and an API method call. These
patterns are based on:

• class, method, and parameter names,
• parameter types and positions.

The mapping can be enabled simply by placing the annotation
@VoiceControllable over a class or a method. When these
natural mapping patterns are not sufficient, the programmer
can adjust the mapping by using annotations, such as:

• @StringMapping(Mapper.class) to specify the string-to-
object mapping for a parameter,

• @ValidValues(ValueSet.class) to enumerate possible
values of a parameter at runtime,

• @Synonym(of="word1", is="word2") over packages,
classes, methods, and parameters to specify local
synonyms,

• @VoiceCommand("regex (param)") to specify an exact
regular expression whose match will execute the given
method.

There are many limitations of the described work. First of
all, we did not yet perform full validation of our ideas. We
should create a golden standard of sentence-to-API mappings
(or utilize an existing one). Then we need to validate our
approach by measuring the accuracy of the algorithms based
on our ideas when compared to the golden standard. We
hypothesize our simple approach based on word similarities
would work well for small or medium-sized APIs, but it could
be problematic for larger ones.

Next, we described only a small portion of all useful
patterns. In the future, we could devise more elaborate ways to
express numerical ranges, binary operators, various collection
types, exceptions, etc. String-to-object mappers could be im-
proved too. In addition to the manual definition of synonyms,
domain ontologies could be used too.

The examples mentioned in this article are very simple – in
order to show the point of our approach. We should inspect
larger APIs from multiple domains and assess the applicability
of our patterns to them.

Finally, in this article, we were interested only in simple,
one-sentence inputs being mapped to single API calls. The
approach could be extended to support nested API calls or
more complex natural language dialogs in the future.

3https://developers.google.com/voice-actions/custom-actions
4https://developer.apple.com/documentation/sirikit

ACKNOWLEDGMENT

This work was supported by Project VEGA No. 1/0762/19
Interactive pattern-driven language development. This work
was also supported by FEI TUKE Grant no. FEI-2018-57
“Representation of object states in a program facilitating its
comprehension”.

REFERENCES

[1] A. Rogowski, “Industrially oriented voice control system,” Robot.
Comput.-Integr. Manuf., vol. 28, no. 3, pp. 303–315, Jun. 2012.

[2] T. Gvero and V. Kuncak, “Synthesizing Java expressions from free-
form queries,” in Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2015. ACM, 2015, pp. 416–432.

[3] G. Little and R. C. Miller, “Translating keyword commands into exe-
cutable code,” in Proceedings of the 19th Annual ACM Symposium on
User Interface Software and Technology, ser. UIST ’06. ACM, 2006,
pp. 135–144.

[4] T. Nguyen, P. C. Rigby, A. T. Nguyen, M. Karanfil, and T. N. Nguyen,
“T2API: Synthesizing API code usage templates from english texts
with statistical translation,” in Proceedings of the 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. ACM, 2016, pp. 1013–1017.

[5] J. Kollár, E. Pietriková, and S. Chodarev, “Abstraction in programming
languages according to domain-specific patterns,” Acta Electrotechnica
et Informatica, vol. 12, no. 2, pp. 9–15, 2012.

[6] G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39–41, Nov. 1995.

[7] L. Galko and J. Porubän, “Tools used in ambient user interfaces,” Acta
Electrotechnica et Informatica, vol. 16, no. 3, pp. 32–40, 2016.

[8] P. Jaccard, “The distribution of the flora in the alpine zone,” New
Phytologist, vol. 11, no. 2, pp. 37–50, 1912.

[9] S. Gulwani, “Dimensions in program synthesis,” in Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming, ser. PPDP ’10. ACM, 2010, pp.
13–24.

[10] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,
S. R, and S. Roy, “Program synthesis using natural language,” in Pro-
ceedings of the 38th International Conference on Software Engineering,
ser. ICSE ’16. ACM, 2016, pp. 345–356.

[11] G. Little and R. C. Miller, “Keyword programming in Java,” in Pro-
ceedings of the 22nd IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE ’07. ACM, 2007, pp. 84–93.

[12] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “SQLizer: Query
synthesis from natural language,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 63:1–63:26, Oct. 2017.

[13] V. Le, S. Gulwani, and Z. Su, “SmartSynth: Synthesizing smartphone
automation scripts from natural language,” in Proceeding of the 11th
Annual International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’13. ACM, 2013, pp. 193–206.

[14] S. Zamanirad, B. Benatallah, M. Chai Barukh, F. Casati, and C. Ro-
driguez, “Programming bots by synthesizing natural language expres-
sions into API invocations,” in Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, ser. ASE
2017. IEEE Press, 2017, pp. 832–837.

[15] M. Landhäußer, S. Weigelt, and W. F. Tichy, “NLCI: A natural language
command interpreter,” Automated Software Engg., vol. 24, no. 4, pp.
839–861, Dec. 2017.

[16] O. Pulido-Prieto and U. Juárez-Martínez, “A survey of naturalistic
programming technologies,” ACM Comput. Surv., vol. 50, no. 5, pp.
70:1–70:35, Sep. 2017.

[17] R. Knöll, V. Gasiunas, and M. Mezini, “Naturalistic types,” in Proceed-
ings of the 10th SIGPLAN Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, ser. Onward! 2011.
ACM, 2011, pp. 33–48.

[18] J. Bloch, “How to design a good API and why it matters,” in Companion
to the 21st ACM SIGPLAN Symposium on Object-oriented Programming
Systems, Languages, and Applications, ser. OOPSLA ’06. ACM, 2006,
pp. 506–507.

[19] J. Stylos and B. Myers, “Mapping the space of API design decisions,” in
Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing, ser. VLHCC ’07. IEEE Computer Society, 2007,
pp. 50–60.

[20] M. Hirzel, L. Mandel, A. Shinnar, J. Simeon, and M. Vaziri, “I can
parse you: Grammars for dialogs,” in 2nd Summit on Advances in

Programming Languages (SNAPL 2017), ser. LIPIcs, vol. 71. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 6:1–6:15.

[21] J. Porubän, M. Forgáč, and M. Sabo, “Annotation based parser gener-
ator,” in 2009 International Multiconference on Computer Science and
Information Technology, Oct. 2009, pp. 707–714.

