
This is a post-peer-review, pre-copyedit version of an article published at SOFSEM 2020. The
final authenticated version is available online at https://doi.org/10.1007/978-3-030-38919-2 39.

String Representations of Java Objects:
An Empirical Study

Matúš Suĺır[0000−0003−2221−9225]

Technical University of Košice
Letná 9, 042 00 Košice, Slovakia

matus.sulir@tuke.sk

Abstract. String representations of objects are used for many purposes
during software development, including debugging and logging. In Java,
each class can define its own string representation by overriding the
toString method. Despite their usefulness, these methods have been ne-
glected by researchers so far. In this paper, we describe an empirical study
of toString methods performed on a corpus of Java files. We are asking
what portion of classes defines toString, how are these methods called,
and what do they look like. We found that the majority of classes do not
override the default (not very useful) implementation. A large portion of
the toString method calls is implicit (using a concatenation operator).
The calls to toString are used for nested string representation building,
exception handling, in introspection libraries, for type conversion, and
in test code. A typical toString implementation consists of literals, field
reads, and string concatenation. Around one third of the string represen-
tation definitions is schematic. Half of such schematic implementations
do not include all member variables in the printout. This fact motivates
the future research direction – fully automated generation of succinct
toString methods.

Keywords: ToString methods · Java · Quantitative study · Qualitative
study.

1 Introduction

Almost every object-oriented programming language supports a way to represent
the state of an object as a text string. Usually, the textual representation is
obtained by calling a method such as String(), printOn:, or to s.

In Java, this method is called toString. Its basic implementation is defined
in the root of the class hierarchy – the class Object. It is therefore callable
on an object of any type. However, the default implementation displays only
a class name and a hash code of the object, e.g., java.io.FileWriter@5c29bfd.
Each class can override this method to implement a potentially useful textual
representation. For example, a HashMap instance can be represented as “{a=1,
b=2}”.

String representations are used during debugging, logging, testing and for
many other purposes. For instance, when a developer displays a list of variables

https://doi.org/10.1007/978-3-030-38919-2_39

2 M. Suĺır

in a contemporary debugger, each non-primitive variable is initially shown as a
string obtained by calling the toString method on it. Only after expanding it,
individual member variables are displayed.

Despite their importance, toString and related methods have received lim-
ited attention by researchers so far. Schwarz [10] performed a very brief analysis
of printOn: methods in Smalltalk. Although not directly focused on string rep-
resentation methods, Qiu et al. [8] and Lemay [5] performed large-scale studies
of Java language usage, where they found the toString method is among the
most used standard library calls.

In this paper, we would like to present an empirical study about the preva-
lence and properties of toString methods in Java. Using automated analysis of
a source code corpus and manual inspection of selected examples, we will answer
the following research questions:

– RQ1: What portion of classes defines their own toString method?
• RQ1.1: How deep in the inheritance hierarchy are toString methods

defined?
– RQ2: How are toString methods called in the code?
• RQ2.1: Are they explicit (method calls) or implicit (concatenations of

a string and a non-string)?
• RQ2.2: Are they often called from other toString implementations?
• RQ2.3: What are other common usage scenarios of string representa-

tions?
– RQ3: What do typical toString methods look like?
• RQ3.1: What language constructs do they consist of?
• RQ3.2: Do they often call toString of the superclass?
• RQ3.3: Are they rather schematic, or do they contain advanced logic?
• RQ3.4: Do they print the values of all member variables or only a por-

tion of them?

The contribution of this paper is twofold. First, we expand the available
knowledge in this area by describing the current state of string representation
implementation and usage. Second, since these implementations may be repet-
itive, this paper can act as a basis for their future automated generation. This
could, for example, make debugging easier, particularly in situations when the
available display space is constrained [12].

In section 2, we briefly describe the method. In sections 3, 4, and 5, the
method is elaborated and the results of each research question are presented. Fi-
nally, we describe the threats to validity (section 6), related work (7), conclusion
and future work (8).

2 Method Outline

To perform the analysis, we needed a corpus of parsable source code files. For
some questions or their parts, type resolution was necessary. This means that
except for the source files themselves, we needed also their compiled versions

String Representations of Java Objects: An Empirical Study 3

along with all their dependencies, such as third-party libraries. Furthermore,
although projects in online repositories (e.g., GitHub) are easily accessible in
large quantities, they can include homework assignments or personal backups,
potentially skewing the analysis results [4]. Therefore, we sought for a curated
collection of software projects.

The only well-known corpora fulfilling all of the above criteria are the Qual-
itas Corpus [13] and corpora based on it, such as Qualitas.class [14]. Since they
are outdated, we decided to build a new corpus based on them. From the Qual-
itas Corpus [13], we selected a random subset of 15 open source projects which
are still active (updated in the last year) and successfully buildable. We manually
downloaded their current versions and whenever possible, we also automatically
downloaded both the source code and binary forms of their dependencies, includ-
ing the transitive ones. This way, we obtained an up-to-date corpus consisting of
759 artifacts (projects and modules) with 106,473 unique Java files (based on the
package and type names). The number of classes in these files, including named
inner and nested classes, is 149,057. For more than 97% of them, we were able
to successfully resolve all their superclasses up to the root of the type hierarchy.

After constructing the corpus, we executed an automated source code analysis
process on it. This analysis was performed by a custom program we have written
using the Spoon library [7]. To enable the reproducibility of research, both the
corpus-building script and the analysis program are available online1.

All quantitative results were produced fully automatically by the program.
The output of the analysis included also source code examples, some of which
we inspected manually, thus producing qualitative results (RQ2.3 and a part of
RQ3.1). Details of the method are different for each of the research questions,
so they are described in the following sections.

3 ToString Definitions

First of all, we would like to know what proportion of classes defines their own
toString method and how many of them rely on the default representation. A
naive approach answering this might be to count the classes defining toString

and divide them by the total number of classes. However, we must consider
also type hierarchies: For example, a HashMap does not define its own toString,
but its superclass, AbstractMap, defines one. A string representation defined in a
superclass is usually still useful, but in some cases it may be less specific than
the method defined directly in the class.

Therefore, we first counted all concrete (not abstract) classes, excluding enu-
meration types, anonymous and test classes, considering only classes with re-
solved supertypes. The result was a list of 94,548 classes. Then for each of them,
we constructed a type hierarchy from the class itself up to Object. Finally, we
determined which toString method would be executed when calling this method
on the object of the analyzed class. It is always the most specific defined method

1 https://github.com/sulir/tostring-study

https://github.com/sulir/tostring-study

4 M. Suĺır

– e.g., in the mentioned example, for the hierarchy HashMap _ AbstractMap _
Object, it is the method in AbstractMap.

We divided the results into four categories: the most specific toString method
is defined directly in the given class, in its direct superclass, indirect superclass,
or in the root of the class hierarchy (Object). In Fig. 1, we can see the results in
a graphical form.

root (Object) 73.1%
indirect superclass 10.7%

direct superclass 6.3%
in the given class 9.9%

0 10 20 30 40 50 60 70 [%]

Fig. 1. The most specific toString method definition for classes

Answering RQ1 and RQ1.1, only 9.9% of classes define their own toString

implementation directly, while 17.0% derive a custom implementation from one
of their superclasses. The majority of the analyzed classes (73.1%) does not de-
fine a custom string representation at all – it relies on the default one, which is
useless in many cases. This highlights a need to offer fully automated genera-
tion of string representations. Although modern IDEs (integrated development
environments) offer semi-automated (partially manual) generation of toString

methods, developers evidently do not utilize this feature to a high extent.

4 ToString Invocations

In Java, toString methods can be called either explicitly or implicitly. An explicit
call is a standard method call visible in the source code, e.g.:

String value = someObject.toString();

An implicit toString call is performed automatically on a non-string object
during concatenation of a string and non-string expression:

Object nonStringObject;

String value = "string " + nonStringObject;

When answering RQ2 and its sub-questions, we considered all parsable Java
files (106,473). We automatically searched for all toString() method invocations
and categorized them as either implicit or explicit. The implicit calls were rec-
ognized by searching for the “+” operator with one string and one non-string
operand. The locations of the calls were also noted and categorized as either di-
rectly inside another toString method definition or outside it. Then, we selected
a random subset of the calls, which we inspected manually to gain insights about
string representation usage.

For the summary of quantitative results, see Table 1.

String Representations of Java Objects: An Empirical Study 5

Table 1. Explicit vs. implicit toString calls, calls from other toString methods.

Call type
Explicit (obj.toString()) 36.7%

Implicit (concatenation) 63.3%

Call location
From within other toString methods 13.0%

Outside a toString method 87.0%

4.1 Explicit and Implicit Calls

First, we will answer RQ2.1. A majority of toString calls (63.3%) is implicit
– i.e., not visible in the source code at a first sight. On average, we found 0.34
explicit and 0.59 implicit toString invocations per Java file. This totals to 0.93
toString invocations per Java file, which means string representations are fairly
commonly utilized in the code.

4.2 Calls from Other toStrings

Answering RQ2.2, we determined that 13.0% of all toString() calls were located
directly in another toString definition. This means string representations are
fairly often built recursively from other textual representations. In addition to
this, the toString method is sometimes called also indirectly through a chain of
other auxiliary methods.

4.3 Other Usage Scenarios

Except for building string representations of objects from other string repre-
sentations, there are other common usage scenarios. Now we will look at the
examples of them, thus answering RQ2.3.

String representations are commonly used to work with exceptions. There are
two recurring patterns which we encountered during the manual inspection of
the results. In the first case, an object is converted to a string and then included
in the message of the exception being constructed and thrown. The second case
is the conversion of a caught exception to a string and passing it to a logger.

Textual representations were used for logging beyond exception handling:
Any object can be converted to a string and written to a logger (e.g., a file or
console) for debugging purposes.

We also encountered multiple toString invocations in introspection libraries,
where they were used to convert runtime metadata of the program into strings,
so they could be later used for debugging and visualization purposes.

A very common usage of toString is for a conversion of a string-like object
(e.g., an XMLString) to a standard String. The most frequent conversion we
encountered was from a StringBuilder (or related classes), which is a mutable
implementation of a text string in Java.

6 M. Suĺır

Finally, toString calls were present also in unit tests. In assertions, a string
representation was often compared with another string representation or a literal.

Particularly the last two applications (type conversion and unit testing) are
typical examples of cases when the toString method is not used only for debug-
ging and development purposes, but where it has an influence on the correct
program functionality. This has an important implication for us. If we wanted to
implement an automatically applied string representation generator, we would
have to take great care not to break the existing representations. For example,
if an object had the toString method implemented in an indirect superclass
and we wanted to generate a more specific one directly in the given class, we
could break the functionality if the program logic relied on the toString from
the superclass.

5 ToString Contents

To answer RQ3, we analyzed all toString methods defined inside classes in our
corpus (considering only the ones for which we had the source code available
and superclasses resolved). In total, 11,302 method definitions were analyzed.

5.1 Language Constructs

Our main goal was to find out whether there exist certain very common forms of
toString definitions, which are possibly repetitive. To answer RQ3.1, for each
analyzed method, we obtained a set of all AST (abstract syntax tree) node types
present in it. For example, the definition

return "a" + "b";

contains the AST node set {Return, Literal, BinaryOperator}. We excluded too
generic AST types, such as blocks or type references. Then, we counted how
often each such node set is present in the collection of the analyzed toString

methods.
In Table 2, we can see a list of the most frequently occurring node sets, along

with the percentages of the toString methods where they occur and examples of
their source code. This provides us an overview of how typical toString methods
look, which of them were probably semi-automatically generated with an IDE,
and to what extent their generation could be fully automatized.

Almost 14% of toString methods consist of a return statement and a mix
of literals, field reads on the current object (this), and binary operators (most
notably, “+”). We suppose these definitions were frequently generated using an
IDE.

The second most frequent set contains method invocations in addition to
these node types. Here we observe less schematic code, since on some variables,
various methods were called to more precisely specify the string representation.

The next three node type sets usually represent the same essence – only one
member variable is included in the string representation, without any additional

String Representations of Java Objects: An Empirical Study 7

Table 2. The most frequent node type sets in the collection of analyzed toString
method definitions.

% Node type set Source code example

13.82 {Return, Literal, ThisAccess,
FieldRead, BinaryOperator}

return "PreparedStatementCreator: sql=[" +

sql + "]; parameters=" + this.parameters;

8.84 {Return, Literal, ThisAccess,
FieldRead, BinaryOperator,
Invocation}

return "registry[" + this.sessions.size()

+ " sessions]";

8.03 {Return, ThisAccess, Field-
Read, Invocation}

return table.toString();

5.81 {Return, ThisAccess, Invoca-
tion}

return getName();

5.63 {Return, ThisAccess, Field-
Read}

return flag;

5.42 {Return, Literal} return "Immediate key";

5.15 {Return, ThisAccess, Invoca-
tion, BinaryOperator, Literal}

return getArtifact() + " < "

+ getRepositories();

2.90 {Return, ThisAccess, Field-
Read, Invocation, Literal}

return String.format("%s[value=%s]",

getClass().getSimpleName(), value);

2.62 {Return, LocalVariable, Con-
structorCall, VariableRead,
Invocation, Literal, ThisAc-
cess, FieldRead}

final StringBuilder buf

= new StringBuilder();

buf.append("[local: ").append(this.local);

buf.append("defaults: ")

.append(this.defaults);

buf.append("]");

return buf.toString();

2.44 {Return, LocalVariable, Con-
structorCall, VariableRead,
Invocation, Literal, ThisAc-
cess, FieldRead, BinaryOper-
ator, If}

StringBuilder sb

= new StringBuilder("FactoryCreateRule[");

if (creationFactory != null) {
sb.append("creationFactory=");

sb.append(creationFactory);

}
sb.append("]");

return (sb.toString());

8 M. Suĺır

information. In cases when the given field was not a sole member variable of
the class, a question arises how this field was selected and why its name is not
printed.

When a toString method returns solely a literal, it is often related to the
given class name; this is not a rule though. Methods consisting of invocations,
binary operators, and literals frequently contained getters – but again, this is
not a rule.

The last three lines in Table 2 are mainly just variations of the first one,
but using either a string-formatting function String.format or mutable strings
(StringBuilder, with or without null checking) instead of string concatenation.

5.2 Reusing Superclass Implementations

Next, we were interested in whether toString implementations reuse the string
representation of a superclass in some way – i.e., whether they include a call to
super.toString(). We analyzed all toString methods inside classes derived from
a class other than Object.

We found out only 10.3% of such methods call super.toString(). This is
probably caused by the fact that only a small portion of classed directly defines
toString, which makes reuse difficult.

5.3 Schematic Implementations

Since our future vision is to fully automate the string representation gener-
ation, in RQ3.3 we focused on the schematicity of the toString implemen-
tations. We define a schematic implementation as a method definition which
consists only of one or more of these language constructs: return, this, string
literals, super.toString(), direct reading of the fields of the current object, a
null-checking if statement or ternary operator, and standard string-building
operations (a toString call, string concatenation, a String.format call, basic
StringBuilder and StringBuffer operations).

We found that 33.4% of toStrings correspond to our definition of schematic
implementation, while 66.6% of them are more complicated. The former group
looks promising with respect to the possibility of fully automated generation.

5.4 Member Variables Read

Finally, in RQ3.4, we further inspect the schematic implementations found in
the previous step. Schematic toString definitions often contain a class name and
a list of name–value pairs of the object’s member variables. Many of them were
probably generated using a wizard in an IDE. However, note that the generation
process is not fully automated: the programmer must still manually select which
member variables will be included in the textual representation and which ones
will be omitted. Otherwise the representations might get impractically long, es-
pecially if the member variables themselves are non-primitive objects with their

String Representations of Java Objects: An Empirical Study 9

own – similarly structured – string representation. Some fields might be also
considered irrelevant to the application domain (e.g., logging support). There-
fore, we hypothesize only a portion of member variables are included in string
representations.

To empirically confirm our intuition, we consider all schematic toString im-
plementations inside classes with at least one non-constant (i.e., not static final)
member variable. For them, we determine what proportion of non-constant mem-
ber variables of the given class are read in its toString method. For simplicity,
we consider only member variables (fields) defined directly in a given class, not
in its superclasses.

The results are depicted in Fig. 2. About half of the analyzed classes (51.5%)
read all fields in its string representation, while the other half (48.5%) include
only some of them or none.

all fields 51.5%

at least 1/2 20.2%

less than 1/2 22.0%

no fields 6.3%

0 10 20 30 40 50 [%]

Fig. 2. The proportion of member variables read in schematic toString methods

We consider the latter case to be a suitable candidate for full automation:
Using heuristics or machine learning, we could select a subset of fields which
should be included in the string representation.

6 Threats to Validity

Now we will describe threats to the validity of our study according to Wohlin et
al. [15].

6.1 Construct Validity

During the analysis, we excluded duplicate files based on package names and
top-level type names (fully qualified class names). Nevertheless, there still may
be duplicate classes present under different names.

In the first research question, we excluded test classes based on standard-
ized directory names, which might not be sufficient. However, it is questionable
whether it is useful to have string representations of test classes or not, and what
exactly is considered a test class.

For the third research question, we represented methods by the sets of node
types they consist of, which may be an oversimplification. The displayed exam-
ples might not fully represent the whole node type sets. Nevertheless, RQ3.1 was
partially qualitative and the listed exact percentages are mainly supplementary.

10 M. Suĺır

Our definition of schematic implementation is rather ad-hoc. However, it was
inspired by common toString generation templates of the most used Java IDEs.

During the analysis of member variable reads, we did not include member
variables defined in the superclasses. However, this improves the clarity of the
study since the fields in superclasses are not always accessible (there may be
private, package-private and located in a different package, etc.), which would
complicate the interpretation of the results.

6.2 External Validity

Findings about the corpus used in this study might not be generalizable, since
the corpus may not be representative of all software used in practice. We tried
to mitigate this threat by basing it on an existing curated corpus and including
dependencies to increase its size. Although it was not constructed directly by
crawling large-scale software forges such as GitHub, it includes many projects
hosted on these sites. The corpus includes software maintained by many orga-
nizations and individuals, developed by thousands of developers. On the other
hand, the inclusion of dependencies in the analysis might add bias as the code
of libraries may be different from other code.

Although the original corpus was dated, we selected only projects updated
in the last year. The list of the 15 base projects therefore includes rather mature
projects – but their dependencies can include also newer and smaller ones.

7 Related Work

The most similar study to ours was performed by Schwarz [10]. He found that
28% of Smalltalk repositories in Squeaksource included a definition of a printOn:

method (a Smalltalk analogy of toString), and the average length of a printOn:

method was 7.1 lines. A few other findings regarding the properties of printOn:

methods were very briefly described. In contrast to him, our study was per-
formed on Java, uses a larger corpus, defines more precise research questions,
and includes a more in-depth analysis.

There exist multiple works studying language and API usage in general.
However, they are not specifically focused on toString methods in any way. For
example, Dyer et al. [3] performed a study of a huge collection of AST nodes to
study the usage of Java language features. Three separate studies – by Ma et al.
[6], Qiu et al. [8], and Lemay [5] – studied general API call usage on large Java
corpora. These three studies consistently found out that the toString method is
one of the most called standard API methods in source code.

Xu et al. [16] parse toString methods to determine the mapping between
lines in log files and the source code fragments that produced them. They did
not perform any empirical study of the toString methods though.

In a study of the Hackage Haskell corpus, deriving Show, responsible for the
string representation generation, was the most common deriving statement [1].

String Representations of Java Objects: An Empirical Study 11

Complementary to string representations, researchers designed also approaches
to specify graphical representations of objects: namely DoodleDebug [10], Vebug-
ger [9], and the Moldable Inspector [2]. In our previous work [11], we investigated
what properties developers expect from such visual representations.

8 Conclusion and Future Work

In this paper, we described an empirical study of textual object representations
in Java. We found that the majority of classes (73%) relies on the default (and
often not very useful) toString implementation defined in the Object class.

A majority of toString method calls (63%) is implicit – using a string con-
catenation operator with one non-string operand. The toString methods are
called from other representation-building methods (13%), in exception handling
and logging code, in introspection utilities, when performing type conversion,
and from unit tests. They are therefore consumed not only by developers as a
debugging aid, but are sometimes necessary for the software to function properly.

A very common toString definition consists of literals, field reads, and string
concatenation operators. String representations of superclasses are rarely reused
(10% of toStrings contain them). A significant portion of toString definitions
(over 33%) is rather schematic. Half of such schematic implementations read all
member variables, the other half excludes some of them.

In the future, we would like to extend our study. First, we could use a larger
and more representative source code corpus. Second, we would like to answer
our research question in a more in-depth manner, particularly RQ3. Finally,
our main future goal is fully automated generation of useful and still succinct
toString methods without any manual interaction by a developer, particularly
by selecting the most important fields to display using machine learning.

Acknowledgments. This work was supported by Project VEGA No. 1/0762/19
Interactive pattern-driven language development. This work was also supported
by FEI TUKE Grant no. FEI-2018-57 “Representation of object states in a
program facilitating its comprehension”.

References

1. Bezirgiannis, N., Jeuring, J., Leather, S.: Usage of generic programming on hack-
age: Experience report. In: Proceedings of the 9th ACM SIGPLAN Workshop on
Generic Programming. pp. 47–52. WGP ’13, ACM, New York, NY, USA (2013).
https://doi.org/10.1145/2502488.2502494

2. Chiş, A., Nierstrasz, O., Syrel, A., Gı̂rba, T.: The Moldable Inspector. In: 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software. pp. 44–60. Onward! 2015, ACM, New York, NY, USA
(2015). https://doi.org/10.1145/2814228.2814234

https://doi.org/10.1145/2502488.2502494
https://doi.org/10.1145/2814228.2814234

12 M. Suĺır

3. Dyer, R., Rajan, H., Nguyen, H.A., Nguyen, T.N.: Mining billions of AST nodes to
study actual and potential usage of Java language features. In: Proceedings of the
36th International Conference on Software Engineering. pp. 779–790. ICSE 2014,
ACM, New York, NY, USA (2014). https://doi.org/10.1145/2568225.2568295

4. Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D.M., Damian, D.:
The promises and perils of mining GitHub. In: Proceedings of the 11th Working
Conference on Mining Software Repositories. pp. 92–101. MSR 2014, ACM, New
York, NY, USA (2014). https://doi.org/10.1145/2597073.2597074

5. Lemay, M.J.: Understanding Java usability by mining GitHub repositories. In:
9th Workshop on Evaluation and Usability of Programming Languages and Tools
(PLATEAU 2018). OpenAccess Series in Informatics (OASIcs), vol. 67, pp. 2:1–2:9.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2019).
https://doi.org/10.4230/OASIcs.PLATEAU.2018.2

6. Ma, H., Amor, R., Tempero, E.: Usage patterns of the Java standard API.
In: Proceedings of the XIII Asia Pacific Software Engineering Conference. pp.
342–352. APSEC ’06, IEEE Computer Society, Washington, DC, USA (2006).
https://doi.org/10.1109/APSEC.2006.60

7. Pawlak, R., Monperrus, M., Petitprez, N., Noguera, C., Seinturier, L.: Spoon: A
library for implementing analyses and transformations of Java source code. Softw.
Pract. Exper. 46(9), 1155–1179 (Sep 2016). https://doi.org/10.1002/spe.2346

8. Qiu, D., Li, B., Leung, H.: Understanding the API usage in Java. Inf. Softw.
Technol. 73(C), 81–100 (May 2016). https://doi.org/10.1016/j.infsof.2016.01.011

9. Rozenberg, D., Beschastnikh, I.: Templated visualization of object state with Ve-
bugger. In: Proceedings of the 2014 Second IEEE Working Conference on Software
Visualization. pp. 107–111. VISSOFT ’14, IEEE Computer Society, Washington,
DC, USA (2014). https://doi.org/10.1109/VISSOFT.2014.26

10. Schwarz, N.: DoodleDebug, objects should sketch themselves for code understand-
ing. In: 5th Workshop on Dynamic Languages and Applications. DYLA 2011 (2011)

11. Suĺır, M., Juhár, J.: Draw this object: A study of debugging representations. In:
Proceedings of the Conference Companion of the 3rd International Conference on
Art, Science, and Engineering of Programming. pp. 20:1–20:11. ACM (Apr 2019).
https://doi.org/10.1145/3328433.3328454

12. Suĺır, M., Porubän, J.: Augmenting source code lines with sample vari-
able values. In: Proceedings of the 2018 26th IEEE/ACM International
Conference on Program Comprehension (ICPC). pp. 344–347 (May 2018).
https://doi.org/10.1145/3196321.3196364

13. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The Qualitas Corpus: A curated collection of Java code for empirical
studies. In: Proceedings of the 2010 Asia Pacific Software Engineering Conference.
pp. 336–345. APSEC ’10, IEEE Computer Society, Washington, DC, USA (2010).
https://doi.org/10.1109/APSEC.2010.46

14. Terra, R., Miranda, L.F., Valente, M.T., Bigonha, R.S.: Qualitas.class corpus: A
compiled version of the Qualitas Corpus. SIGSOFT Softw. Eng. Notes 38(5), 1–4
(Aug 2013). https://doi.org/10.1145/2507288.2507314

15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in Software Engineering. Springer (2012)

16. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles. pp. 117–132. SOSP ’09, ACM,
New York, NY, USA (2009). https://doi.org/10.1145/1629575.1629587

https://doi.org/10.1145/2568225.2568295
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.4230/OASIcs.PLATEAU.2018.2
https://doi.org/10.1109/APSEC.2006.60
https://doi.org/10.1002/spe.2346
https://doi.org/10.1016/j.infsof.2016.01.011
https://doi.org/10.1109/VISSOFT.2014.26
https://doi.org/10.1145/3328433.3328454
https://doi.org/10.1145/3196321.3196364
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/2507288.2507314
https://doi.org/10.1145/1629575.1629587

	String Representations of Java Objects: An Empirical Study

