
Open Access. © 2021 M. Sulír and J. Porubän, published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 License

Open Comput. Sci. 2021; 11:135–145

Research Article

Matúš Sulír* and Jaroslav Porubän

Natural mapping between voice commands and
APIs
https://doi.org/10.1515/comp-2020-0125
Received Mar 31, 2020; accepted Jun 10, 2020

Abstract:After a voice control system transforms audio in-

put into a natural language sentence, its main purpose is

to map this sentence to a specific action in the API (appli-

cation programming interface) that should be performed.

This mapping is usually specified after the API is already

designed. In this paper, we show how an API can be de-

signed with voice control in mind, which makes this map-

ping natural. The classes, methods, and parameters in the

source code are named and typed according to the terms

expected in the natural language commands. When this

is insufficient, annotations (attribute-oriented program-

ming) are used to define synonyms, string-to-object maps,

or other properties. We also describe the mapping process

and present a preliminary implementation called VCMap-

per. In its evaluation on a third-party dataset, it was suc-

cessfully used to map all the sentences, while a large por-

tion of themappingwas performedusing only naming and

typing conventions.

Keywords: voice control, natural language, application

programming interface (API), classes, methods

1 Introduction
The ability to control applications by voice is becoming

more prevalent. From the developer’s point of view, the

implementation of a voice control system consists of two

main tasks: the transformation of a voice signal into its

textual form and the selection of an appropriate action to

perform [19]. In this paper, we focus solely on the second

part, i.e., the mapping of a natural language sentence to

*Corresponding Author: Matúš Sulír: Department of Computers

and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00, Košice, Slovakia;

Email: matus.sulir@tuke.sk

Jaroslav Porubän: Department of Computers and Informatics,

Faculty of Electrical Engineering and Informatics, Technical

University of Košice, Letná 9, 042 00, Košice, Slovakia; Email:

jaroslav.poruban@tuke.sk

a method in the API (application programming interface)

which should be executed as a result of this input.

Currently, there exist multiple ways to map a sentence

to a method in the API. Manual approaches usually re-

quire the combination of configuration files and impera-

tive source code to specify the mapping. Automated ap-

proaches utilize probabilistic grammars and heuristics [5],

translation of keywords [11], or translation based on ma-

chine learning [15].

All of these approaches have one disadvantage – they

perceive voice control only as an afterthought. The map-

ping from voice commands to API calls is performed af-

ter the API is already implemented, possibly by other de-

velopers. In contrast to them, we will show how an API

can be tailored to be voice-controllable by leveraging the

similarities between the natural language sentence on one

hand; and the names, types and class structure on the

other hand. For example, the command “lock the screen

after 5 seconds” could lead to a call to screen.lock(5) if

there is a method void lockAfter(int seconds) in the class

Screen. If such similarities are absent or insufficient, we

can fine-tune the mapping using annotations (attribute-

orientedprogramming) over classes,methods, andparam-

eters.

This article presents an extended version of our con-

ference paper [22]. In section 2, we not only review and

elaborate the core ideas behind the mapping, but also

define many new possibilities including string parame-

ter predicates, expansion of non-primitive parameters into

members, command composition, voice response, and di-

alogs. In section 3, we describe how the mapping pat-

terns can be applied in the implementation of a command-

to-API mapping framework. Our implementation, called

VCMapper, is available online¹. In the newly added sec-

tion 4, we qualitatively evaluate our approach. Finally, we

review related work (section 5) and conclude the paper

(section 6).

1 https://github.com/sulir/vcmapper

https://doi.org/10.1515/comp-2020-0125
https://github.com/sulir/vcmapper

136 | M. Sulír and J. Porubän

2 Mapping patterns
Now we will gradually describe the individual patterns

of mapping between natural language sentences and API

calls.Wewill use examplesmainly from twodomains – the

control of hardware devices and smartphone voice assis-

tant commands – but the approach is not limited to them.

The language used in these examples is Java. However,

the approach is applicable to any object-oriented language

supporting reflection and attribute-oriented programming

(annotations); static typing is also helpful for some of the

patterns.

2.1 Classes and methods

Suppose we want to turn on the light in the room after

saying “turn on light”. The most primitive and natural

way to achieve this is to name the corresponding method

turnOnLight and annotate it with the marker annotation

VoiceControllable. Thanks to this, themapping framework

can recognize this method as voice-controllable:

@VoiceControllable
public static void turnOnLight() {

// implementation turning on the light...
}

The framework would then split the name of the

method into individual words with respect to the camel-

case convention and transform them to lowercase. The re-

sulting string, “turn on light”, exactly matches the input

sentence. Therefore, this matching method would be au-

tomatically executed.

Calling many static methods of one class is not a good

programming practice, of course. Let us say we have sep-

arate classes to control lights, speakers, monitors, and

other devices. For simplicity, suppose they are named

LightService, SpeakerService, MonitorService, etc. In mod-

ern application frameworks, it is not necessary to call the

constructors of such classes manually. The application

framework initializes the objects of these classes for us us-

ing techniques such as dependency injection. Therefore,

we will assume we have an instance of each necessary

class readily available and we will focus on calling appro-

priatemethods on these objects.We can transform the pre-

vious example into this code:

@VoiceControllable
public class LightService {

public void turnOn() {
// implementation turning on the light...

}
}

The VoiceControllable annotation is now placed over

the class, which means all methods of this class are voice-

controllable. Our mapping framework removes the word

Service from the class name, since it represents an imple-

mentation detail irrelevant to the problem domain. After

appending the word Light to the words from the method

name turnOn, we get “turn on light”, which is equal to the

input sentence.

Of course, such exact equality is rare – we should ac-

cept some variation in the input sentences.

First, we should consider only stemmed versions of

the words during their comparison. This allows us to use

various forms of the words – e.g., the plural “turn on the

lights” instead of the singular.

Next, the permutations of the words should be al-

lowed. For example, “turn on lights” can be expressed also

as “turn lights on”.

Finally, extraneous words can be present in the input

sentence. This includes, for instance, stop words such as

“the” (“turn on the lights”) and courtesy phrases (“please

turn on the lights”). This should work also vice versa:

Some words contained in the method/class name can be

omitted from the command – e.g., “lights on”.

What variations are allowed in the sentences – and to

what degree – is controlled by a specific implementation

of themapping framework. In section 3,wedescribe an im-

plementationaccepting all of these variations to a largede-

gree. Note, however, that alternative implementations are

possible.

2.2 Parameters

Now we will describe the mapping patterns for methods

with parameters.

2.2.1 Primitive and enumeration types

Suppose we would like to set the volume level using the

command such as “set volume level to 80”. This corre-

sponds to the code:

@VoiceControllable
public class VolumeService {

public void setLevel(int percent) { ... }
}

Suppose this method was selected as the only one

matching the sentence. Then we can surely declare the

number “80” is the value of the parameter percent, since

it is the only number in the input sentence – and the pa-

Natural mapping between voice commands and APIs | 137

rameter percent is mandatory. The system thus executes

the method setLevel with the argument value of 80.

A similar logic can be applied to floating-point num-

bers. If we would like to recognize also the command

“set volume level to 81.5”, changing the parameter type to

double is sufficient:

public void setLevel(double percent) { ... }

An enumeration-typed parameter is another straight-

forward case. For example, a speaker (sound channel) can

be defined as:

public enum Speaker {
LEFT, MIDDLE, RIGHT

}

In the class VolumeService, we can then have a method

to turn on the given channel:

public void turnOn(Speaker speaker) { ... }

In the sentence such as “turn on the left speaker”,

we easily can match the word “left” with the enumeration

constant LEFT.

2.2.2 Strings

Often we need to select one of multiple possible op-

tions, but a complete list of these options is not avail-

able at compile time. Suppose we need to open the given

application in the smartphone after saying a sentence

such as “open Gmail”. We create a method in the class

ApplicationService:

public void open(String name) { ... }

To enumerate all possible applications at runtime, we

first create a class implementing themethodwhich returns

a set of these values:

public class AppNames implements StringEnumerator {
public Set<String> getValidValues() {

return Apps.getAll(); // {"Gmail", "Twitter",...}
}

}

Then we annotate the parameter name of the method

open with this class (using the refers-to-element idiom [16]

on the class since annotations in Java cannot refer directly

to methods):

public void open(
@StringEnumeration(AppNames.class) String name

) { ... }

Thanks to this, our framework can easily determine

which part of an input sentence corresponds to the value

of the parameter. Additionally, it helps the system tomatch

the sentence with this method since the sentence contains

“Gmail” and this method accepts such a value as a param-

eter.

Sometimes it is impractical to enumerate all possible

values. Instead, we can askwhether a given string is a pos-

sible value of the given parameter (i.e., to specify a precon-

dition of the argument):

public class AppNames implements StringTester {
public boolean isValid(String value) {

return Apps.contain(value);
}

}

@VoiceControllable
public class ApplicationService {

public void open(
@StringTesting(AppNames.class) String name

) { ... }
}

Preconditions about parameter values are useful

mainly in situations when the set of possible values is

too long or even infinite. The drawback is that instead of

searching the input sentence for a given term, we should

execute the precondition on all n-grams of the input se-

quence to find whether there is a match. Performing this

on all methods with a @StringTesting-annotated parame-

ter can be time-intensive in case of a large number of such

methods.

There exist cases when all possible values cannot be

enumerated at all. Then we should assume the sentence

starts with the given key words and continues with the

value of the String parameter until the end. For exam-

ple, the input “add note: buy coffee and spinach” can be

mapped to the following method in the class NoteService:

public void add(String note) { ... }

The words “add” (the method name) and “note”

(from the class name) are used to find the corresponding

method. The rest of the sentence is mapped to the value of

the String parameter.

If the programmer encounters problemsduring thede-

sign of an API with non-enumerable string values, there

is always a fallback mechanism available: to exactly spec-

ify a regular expression how the sentence should look (see

section 2.5 for more details).

2.2.3 Collections

Suppose we would like to turn off multiple speakers at

once. In the sentence “turn off the left and right speaker”,

138 | M. Sulír and J. Porubän

the part “left and right” is mapped to the value of the

collection-typed parameter, such as a list or a set:

public void turnOff(Set<Speaker> speakers) { ... }

The special keyword “all” can be used to denote all

possible values of an enumeration type, e.g., “turn off all

speakers”.

In the case of integers, we can use also ranges, e.g.,

“turn off speakers 3 to 7”. Again, we declare the given pa-

rameter as a collection type:

public void turnOff(Set<Integer> speakers) { ... }

2.2.4 Classes composed of members

Sometimes classes consist of member variables that are

distinguishable in voice commands. For example, this sim-

ple date consists of a month (an enumeration) and a day:

public class Date {
private Month month;
private int day;

public Month getMonth() { ... }
...

}

Suppose we would like to note the date of our birth-

day by saying, e.g., “set my birthday to January 1”. This

sentence is mapped to the following voice-controllable

method, which has one parameter:

public void setMyBirthday(Date date);

In the voice control framework, such aparameter is ex-

panded to the member variables of the given class – i.e.,

in this case, the method behaves as setMyBirthday(Month

month, int day).

2.2.5 Other classes

Finally, let us consider parameters of any other class. For

example, the class Color has threemember variables along

with the corresponding getters and setters:

public class Color {
private int red, green, blue;
public int getRed() { ... }
...

}

This class is used as a parameter of themethod setting

a solid wallpaper on a phone:

public class WallpaperService {

public void setColor(Color color) { ... }
}

When we use the color in a command, such as “set

wallpaper to yellow color”, we do not explicitly mention

anymembers of the class (the values of red, green, or blue).

Therefore, we need a special form of mapping from the

string representation to the object instance. One option is

to define a constructor taking a string – or a static factory

method such as fromString(String string) which would

create the given object. However, this does not solve the

problemof the enumerationof all possible values. This can

be solved by specifying the string-to-object map:

public class Color implements Mapper<Color> {
private int red, green, blue;
private int getRed();
...

public Map<String, Color> getMap() {
return Map.of(

"black", new Color(0, 0, 0),
"yellow", new Color(255, 255, 0),
...

);
}

}

We must sometimes deal with third-party classes that

cannot bemodified. In such cases,we can specify themap-

ping in a separate class and annotate the parameter with

this created class:

public class ColorMapper implements Mapper<Color> {
public Map<String, Color> getMap() { ... }

}

public class WallpaperService {
public void setColor(

@Mapping(ColorMapper.class) Color color
) { ... }

}

Instead of specifying thewholemap as a run-time con-

stant, we can implement the Converter interface by speci-

fying a method that dynamically tests whether the given

term is acceptable as a value of the parameter (i.e., if the

precondition for the argument holds) and a method that

eventually returns the converted value. For instance, a ra-

tional number can be recognized either as the word “half”

or as a pair consisting of a cardinal and ordinal number

(“one third”).

public class Rational implements Converter {
public Rational(int numerator, int denominator) {...}
...

public boolean isValid(String term) {

Natural mapping between voice commands and APIs | 139

return representsFraction(term);
}

public Rational convert(String term) {
return new Rational(..., ...);

}
}

Voice-controlled methods can then have parameters

of type Rational to represent, in combination with other

parameters, terms such as “half a minute”.

2.2.6 Handling multiple parameters

Methods with multiple parameters do not pose any prob-

lems at all, as long as the sets of the possible values of

each parameter are disjoint. Consider themodified screen-

locking example from the introduction:

public void lockAfter(int number, TimeUnit unit) { ... }

enum TimeUnit {
SECONDS, MINUTES, HOURS

}

For the sentence “lock the screen after 30 seconds”,

the number “30” is passed as a value of the first param-

eter. The word “seconds” is mapped to the enumeration

constant TimeUnit.SECONDS and passed as a value of the pa-

rameter unit.

Things start to complicate a bit when the possible val-

ues of the parameters are not disjoint. For example, sup-

pose we would like to set the volume of a speaker, where

the speakers are labeled by numbers:

public void setVolume(int speaker, int percent) { ... }

Here we have two possibilities. First, the parameters

can be matched by their position in the sentence: For in-

stance, in the sentence “set speaker 1 volume to 80”, the

first parameter is “1” and the second is “80”.

The second possibility is matching by parameter

names. For example, in the sentence “set volume to 80per-

cent for speaker 1”, the twonumbers (80, 1) arematchedby

their proximity to the parameter names (percent, speaker)

in the sentence.

2.3 Synonyms

Instead of using the exactwords contained in the identifier

names, the users often utter their synonyms. Consider the

method open(String name) in the class ApplicationService.

A user would like to say “run WhatsApp” instead of “open

WhatsApp”. Note that “run” is not a synonym of the word

“open” in general – it is limited only to this particular

case. Therefore, our framework supports the notion of a

method-local synonym, denoted by the annotation Synonym

over a method:

@Synonym(of="open", is="run")
public void open(String name);

Such a synonym is applied only during the matching

process of this particular method. In a similar way, we

can support package-local synonyms (by annotating the

package in the special file package-info.java), class-local

and parameter-local synonyms. Multiple synonyms per el-

ement can be specified too:

@Synonym(of="application", is="app")
@Synonym(of="open", is="start")
public class ApplicationService { ... }

If the number of synonyms was too high or a standard

set of general synonyms was appropriate, we would sug-

gest loading the set of synonympairs from an external file,

such as a dictionary. This could be accomplished with an

annotation such as @SynonymFile("general.csv").

2.4 Part of speech recognition

Although allowing permutations in input sentences is use-

ful, sometimes it can cause ambiguity. For example, sup-

pose we have these two voice-controllable classes:

class MonitorService {
public void switch_() { ... }

}

class SwitchService {
public void monitor() { ... }

}

The sentences “switch the monitor” (change the cur-

rent monitor to another one) and “monitor the switch”

(start monitoring the network switch) are ambiguous with

respect to the given code. Therefore, we need to tag the

words in the input sentence using a part-of-speech tagger.

The words in the source code identifiers are tagged

too. According to usual code conventions, the class name

should represent the object being manipulated, and the

method represents the action performed with this object.

Thus, by default, the words in the class names are tagged

as nouns, and the words in the method names are tagged

as verbs. However, the programmer can override this by

using the annotations @Noun("word") and @Verb("word").

The part-of-speech tags both in the sentence and

the methods can be then used for potentially unambigu-

140 | M. Sulír and J. Porubän

ous matching. For instance, “monitor the switch” will be

mapped to SwitchService::monitor.

2.5 Fallback

There are situations when we encounter difficulties with

the application of the mapping patterns. For example, we

would like to say “play Four Seasons by Vivaldi”. In this

sentence, there are two strings – the song name and the

artist –which are very difficult to enumerate (they can con-

tain almost any value). Furthermore, the name of the song

can contain words from other method names/commands:

“turn on the lights” vs. “play Turn on the lights”. There-

fore, we can annotate a method with a regular expression

denoting how exactly should a sentence look.

@VoiceCommand("play (.*) by (.*)")
public void play(String song, String artist)

The specific values of the groups (parentheses) in the

regular expressionwill be supplied as values of the param-

eters during the execution of the method.

2.6 Composition

Except for the simple actions, the user may sometimes

want to use compound commands, such as “turn on the

lights and close the door” or “if wifi is available, disable

mobile data”. The implementation of such commands con-

sists of two steps. First, using the fallback regular expres-

sion as previously described, we annotate a method with

the generic syntax of the compound command. Then we

specify how the compound command should be executed

in the body of the method.

@VoiceCommand("(.*) and (.*)")
public void and(Runnable action1, Runnable action2) {

action1.run();
action2.run();

}

In the example above, two individual commands sepa-

ratedby “and” arematched– i.e., the corresponding voice-

controllable methods are found. An object which is an in-

stance of Runnable (a functional interface used to imple-

ment lambda functions in Java) is created for each of the

matched methods. The body of the method is then exe-

cuted, whichmeans thematchedmethods are run sequen-

tially in this case.

Another example is the “if-then” compound com-

mand, which can be implemented as follows.

@VoiceCommand("if (.*) then (.*)")

public void ifThen(BooleanSupplier condition,
Runnable action) {

if (condition.getAsBoolean())
action.run();

}

Since the first parameter is a BooleanSupplier, a

method returning booleanmustmatch the first simple com-

mand (the part between “if” and “then”). It is executed

and if it returns true, the second simple command is per-

formed.

2.7 Response

So far we considered mainly commands which perform

some external, visible actions such as control a hardware

device or run an application. However, the purpose of

many voice commands is to provide a response to a ques-

tion. For example, after saying “what time is it?”,wewould

like to hear a response like “it is 12:34” from the voice assis-

tant. The most natural way to accomplish this is to create

a method returning a String:

@VoiceControllable
public class TimeService {

public String whatTimeIsIt() {
return "It is " + ...;

}
}

The voice command system then reads this string re-

sponse as-is to the user. If the creation of such a method

is not desirable, we can return an object of any type

(e.g., Time) and the system will read its string represen-

tation. By default, we can use the standard Java method

toString which is available for all objects. In cases when

this representation is not suitable for direct communi-

cation with humans, we can implement the similarly

working method toResponse from the VoiceResponse inter-

face. When we cannot modify the given class, it is pos-

sible to annotate the method returning the object with,

e.g., @ResponseConversion(TimeResponse.class) and imple-

ment the conversion separately:

public class TimeResponse
implements ResponseConverter<Time> {

public String toResponse(Time time) {
return "It is" + ...;

}
}

When a user’s request cannot be processed properly,

the executed method may throw an exception. For exam-

ple, if we request to open a window in a home automa-

tion system and the window is already open, the method

Natural mapping between voice commands and APIs | 141

may throw IllegalStateException. By default, the system

will read the human-readable message of the exception,

obtained by calling getMessage() on the exception object.

If this is not desirable, we can specify the message using

the annotation OnException:

@OnException(of = IllegalStateException.class,
say = "The window is already open.")

public void open() {
...

}

2.8 Dialog

The patterns presented so far represented one input sen-

tence paired with one final response – the execution of

an action and/or a voice answer. Sometimes the user

would like to communicatewith the systemusing a dialog,

though. One of the frequently used kinds of dialog is the

so-called form-filling flow pattern [6]. Here the user asks

the system to perform something, supplying only a min-

imum amount of information. Then the system gradually

asks the user to fill in all the missing data. We will illus-

trate thiswith a very simple examplewhere the userwould

like to send a message. Suppose there is the method send

in the voice-controllable class MessageService (the enumer-

ation of possible values of contact is omitted for brevity):

public void send(String contact, String text) { ... }

The user says “send a message to Joe”. This sentence

contains all necessary information except the text itself.

Thus the system asks the user “What is the text?”; the user

then responds by dictating the text of the message.

By default, the system generates the questions using

the names of the parameters – e.g., “text” in our example.

If there is a better alternative, we canmanually specify the

question for the given parameter:

public void send(@IfAbsent("To whom?")
String contact,
@IfAbsent("Please tell me the message.")
String text) { ... }

3 Mapping process
In this section, we will describe how the mentioned map-

ping patterns can be integrated to form a pattern-based

voice control framework.Wewill discuss the process of the

transformation of an input sentence to the corresponding

action.

First, the input sentence is matched against all reg-

ular expressions specified using the fallback mechanism

(@VoiceCommand("regex")). If a match is found and the pa-

rameters of the method are string-typed (or none), this

method is executed and the process stops here. If the

parameters are functional interfaces (practically, lambda

functions), this is a compound command– individual sub-

commands are extracted and recursively processed using

the usual rules.

Then the type-based matching of parameters is per-

formed. The premise is that, for example, if a method has

an integer parameter and an enum-typed parameter, the

sentencemust contain an integer andawordmatchingone

of the enumeration constants, otherwise it does not match

(unless we want to initiate a dialog, which is deferred to a

later phase). During this phase, we consider not only the

types themselves, but also preconditions specified using

annotations, string-to-object mappings, and other mech-

anisms described in section 2.2. The results of this phase

is a list of potentially matching methods, along with the

mapping of the terms in the sentence to the corresponding

parameters.

For every method in this list, a score of similarity with

the sentence is computed: LetWM be the set of words con-

tained in the class and method name. LetWS be the set of

words in the input sentence, excluding the parameter val-

ues matched in the previous step. The score is computed

as the Jaccard index [7] of these two sets:

|WM ∩WS|
|WM ∪WS|

In cases when the classes or methods are annotated

with synonyms, multiple variants of the set WM are con-

structed, containing words from the methods and classes

gradually replaced with their specified synonyms. The re-

sulting score is the maximum of the scores calculated for

individual variants.

Methods with a score lower than a certain threshold

(e.g., 0.2) are excluded from the set, since they represent

poor matches. This threshold limits the degree to which

the user can omit or add words to the sentence so that it

differs from the words used in the source code.

Finally, a method with the highest score is selected.

Ideally, there is exactly onemethodwith the highest score.

Such a method is executed, and if it has a non-void return

value or throws an exception, a voice response is also pro-

vided.

If there are multiple methods with the same highest

score, the input sentence is tagged using a part-of-speech

tagger. Words that are present in all matchingmethods are

tagged according to the occurrence types (nouns in class

142 | M. Sulír and J. Porubän

names, verbs in method names) or manually defined an-

notations. Matches with at least one word tagged differ-

ently in the sentence and the identifiers are excluded. Then

if only onemethod is left, it is executed.Otherwise, the sys-

tem should tell the user the available options and ask him

to select one of them.

If there is nomatchingmethod, the process is repeated

from the type-based matching step, but this time without

strictly requiring the sentence to contain all parameter val-

ues. Thanks to this, it is possible to identify the matching

methods even if some information is missing and initiate

the dialog to fill in these data.

An implementation of the majority of parts of the de-

scribed process, alongwith numerous examples and tests,

is available at https://github.com/sulir/vcmapper.

4 Evaluation
Since we do not map sentences to existing APIs but man-

ually create a new API, it would not be appropriate to per-

form a fully quantitative evaluation of the approach using

metrics such as precision and recall. Instead, we decided

to perform a predominantly qualitative evaluation of its

strengths, weaknesses, and expressiveness. We used our

implementation of the framework, which is called VCMap-

per².

Our task was to design a voice-controllable API in the

smart home domain. The API should support commands

from The Fluent Speech Commands dataset [13] by Flu-

ent.ai³. Among other data, this dataset contains English

sentences, such as “Put on the music”. Each of these com-

mands ismapped to an intent, e.g., {action: “activate”, ob-

ject: “music”, location: “none”}.We created a subset of the

dataset by randomly selecting 50 sentences, which were

associated with 22 unique intents.

One of the researchers was reading these sentences

and trying to design an API in a most straightforward

way which would enable VCMapper to successfully map

the sentences to the API methods. At the same time, he

was writing mock-based tests to assess the correctness of

matching. In each test, VCMapper was asked to recognize

a sentence, and the mocking framework was asked to ver-

ify whether the correct method was called (and with the

given arguments).

2 https://github.com/sulir/vcmapper

3 https://www.fluent.ai/research/fluent-speech-commands/

Each time there was a problem, the researcher noted it

and remedied it if possible. This allowed us to answer the

following research questions:

– RQ1: What are the strengths, weaknesses, and prob-

lems of our natural command-to-API mapping?

– RQ2: To what degree can our approach express the

mapping of basic commands, such as the ones in the

smart home domain?

4.1 Strengths and weaknesses

To answer RQ1, the main advantage of our approach is

the ease and speed of the mapping definition. Except for

a few problematic situations, which we will describe later,

adding a new API method or the recognition support for a

new sentence was often a matter of seconds.

Since we did not use a general synonymic dictionary,

such as WordNet [14], we had to manually specify syn-

onyms when we wanted to recognize multiple variants of

the same command. This was probably the most promi-

nent weakness we encountered. In many cases, however,

it was not necessary to add synonyms, since the mapping

process used in VCMapper is robust with regard to small

changes in the sentences.

During our task, we encountered a few small prob-

lems, some of which were already resolved. First, we

needed to support both “bathroom” and “washroom” as

the name of the room which was specified as an enum

constant. We could add the @Synonym annotation over all

parameters of type Room, but this would cause unneces-

sary code duplication. We decided to add support for the

@Synonym annotation over the enumeration type definition

itself.

Next, the annotation @Synonym(of="...", is="...")

caused confusion about its directionality: Does the word

in the parameter “of” represent aword in the sentence and

“is” in the identifier names or vice versa? We decided to

consider both directions when performing the matching

using synonyms.

Some words have synonyms consisting of multiple

words, e.g., “decrease” and “turn down”. Therefore, we

needed to implement the multi-word synonym feature.

Multiple times, we encountered a situation when an

intent (action) was associated with a sentence that could

be naturally transformed to a method name, but also with

another, completely different sentence. For instance, both

“Decrease temperature” and “Make it cooler” had to be

mapped to decreaseTemperature(). This was resolved either

by using the fallback mechanism (@VoiceCommand("regex"))

https://github.com/sulir/vcmapper
https://github.com/sulir/vcmapper
https://www.fluent.ai/research/fluent-speech-commands/

Natural mapping between voice commands and APIs | 143

or by specifying synonyms which are not synonyms in the

strict sense (e.g., “decrease” and “cooler”).

A few methods would benefit from some kind of in-

termediate option between the fuzzy matching based on

identifier names and the strict, fully manual regular ex-

pression fallback. In these cases, we usually opted for the

regular expression, such as “.*\btoo loud\b.*” matching

“That’s too loud” and similar utterances.

Some sentences contained irrelevant or even confus-

ing parts, such as the first part of the command “It’s too

loud, turn the volume down”. A mechanism to remove

such parts could be helpful, but it was not necessary and

these sentences were successfully recognized.

Some regular expressions in the VoiceCommand anno-

tation contained groups for purely syntactical reasons,

not to denote potential parameter values, e.g., “.*\b(too

quiet|can’t hear)\b.*”. We ignored superfluous groups,

but named groups (after parameter names) would repre-

sent a better long-term solution.

4.2 Expressiveness

Answering RQ2, we were able to successfully express the
mapping from all 50 natural language sentences in our

dataset to the corresponding API methods. This means

that in the end, all 50 tests passed.

Nowwe will inspect how often the individual features

of our mapping approach were utilized. In the ideal sce-

nario, only mapping based on identifier names would be

used, since it requires minimum effort from the program-

mer. Less ideal, but still relatively natural mapping fea-

tures are the annotations of synonyms, possible valid val-

ues, etc. Fallback annotations (regular expressions) are

the least desirable ones.

To measure this, we first disabled all annotations

except @VoiceControllable (purely name-based mapping)

and determined the proportion of passing tests. Then we

enabled also synonyms (@Synonym), the enumeration of

valid values for string arguments (@StringEnumeration), and

finally also the definitions of commands via regular ex-

pressions (@VoiceCommand). After enabling each additional

annotation type, we measured the portion of the passing

tests.

The results are in Table 1. We can see the mapping

for a relatively large portion of commands (40%) was ex-

pressed in the most natural way, i.e., only by conveniently

naming the classes,methods, and enumeration constants.

Since multiple different utterances were often mapped to

the same methods, the Synonym annotation was used a lot.

Table 1: Portions of tests passed with the given annotations en-
abled

Enabled annotations Tests passing
only @VoiceControllable 40%

also @Synonym 92%

also @StringEnumeration 94%

also @VoiceCommand 100%

The mapping based on regular expressions was utilized

sporadically.

Of course, this small-scale study has its threats to va-

lidity. First, the used dataset is limited to one domain, and

the structure of the intents is relatively simple. Somemore

advanced features of our mapping approach were there-

fore not used in this evaluation. Second, the API was de-

signed by one person, which could lead to the subjectivity

of the results.

5 Related Work
Many approaches mapping sentences to API calls are

grouped under the umbrella term of program synthesis,

particularly program synthesis using natural language in-

put [4]. Desai et al. [2] synthesize source code written in

various domain-specific languages, thanks to a dataset of

sentence–code pairs used for training. Gvero and Kuncak

[5] synthesize Java expressions using probabilistic gram-

mars and heuristics. In T2API, Nguyen et al. [15] perceive
program synthesis as a statistical translation process from

natural language to a programming language. Little and

Miller [12] generate Java code from a set of brief keywords.

Some synthesis approaches are focused on particular do-

mains or technologies, e.g., SQL query generation [23],

smartphone automation script synthesis [10], bot API in-

vocations [24]. All of the mentioned approaches perceive

APIs as black boxes, which are already designed. In con-

trast to them, our idea is to engage the API designers in

the process of natural language command specification.

Landhäußer et al. [9] designedNLCI (natural language
command interpreter), which has a goal similar to ours –

to perform an action in the API, given a natural language

sentence as an input. In contrast to us, they first trans-

form the API into an ontology by analyzing the relation-

ships between elements in the code and combining it with

a general-purpose ontology. Furthermore, they do not sup-

port simple mapping customization via annotations.

The command execution approach by Little andMiller

[11] is basedon the similarity of namesused in the sentence

144 | M. Sulír and J. Porubän

and the API. They also perceive sentences as lists of key-

words, allowing for variations such as extraneous words.

However, they do not allow any customization using an-

notations, since they consider APIs to be developed by a

third party and thus not modifiable.

Naturalistic programming [18] is a paradigm aiming to

make the source code lookmore like natural language. For

example, Knöll et al. [8] discuss naturalistic types which
include the mapping of natural language quantities such

as “nearly all” to exact numeric intervals. Compared to

them, we aim to integrate voice control with existing, tra-

ditional programming languages instead of designing new

ones.

The idea of the specification of possible argument val-

ues resembles the idea of refinement types [3]. Both their

approach and ours narrow the set of acceptable values of

types, e.g., froma general string to a stringmeeting certain

requirements.While themain purpose of refinement types

is to catch more errors at compile time, our approach aims

to ease the matching of a voice command at runtime.

There exist guidelines on how to design APIs in gen-

eral [1] and an overview of design decisions to be made

when creating an API [20]. None of these works take voice-

controllability into account.

YAJCo [17] is a parser generator utilizing the similarity

between the relations of program elements in Java source

files and production rules of computer language gram-

mars. The core ideas behind this article stemmed from YA-

JCo, however, this time they are applied to natural lan-

guages.

While our approach raises the level of abstraction dur-

ing themapping specification, adding specific examples of

input sentencesmatching the givenmethod could help the

programmer. Visual augmentation of a source code editor

[21] would be a suitable approach to display these exam-

ples alongside the source code.

Commercial system APIs, such as Google Assistant in-

tegration⁴ or SiriKit ⁵ are often limited to certain domains

and action types. Furthermore, they require considerable

effort to integrate, such as the creation of configuration

files or implementation of non-trivial interfaces.

Finally, Hirzel et al. [6] describe an idea of grammars

for dialog systems, including virtual voice assistants. How-

ever, they do not try to solve the problem of the mapping

of sentences to API calls.

4 https://developers.google.com/assistant

5 https://developer.apple.com/documentation/sirikit

6 Conclusion
In this paper, which extends our previouswork [22], we de-

scribed a natural way to map natural language sentences

(voice commands) to API calls. In ideal cases, when the

classes/methods are conveniently named and the param-

eters appropriately typed, using the marker annotation

@VoiceControllable is sufficient. Otherwise, the program-

mer has a variety of alternative mechanisms available –

from synonym definitions to object–string mappings and

recognition based on regular expressions. The definition

of compound commands is possible too.

We not only defined how a single command can cause

the execution of an action, but also briefly outlined how

the system can respond with another sentence or commu-

nicate with the user via a dialog.

Many of the presented ideas were implemented in a

framework called VCMapper. Note, however, that the de-

scribed mapping process is not the only one possible – we

could use the patterns (conventions and annotations) in a

framework based on completely different algorithms.

During the evaluation, we were able to successfully

map 50 sentences from a third-party dataset to their cor-

responding API calls. Almost half of them were mapped

using only naming conventions, the rest relied mainly on

the specification of synonyms.

In the future, we could perform amore thorough eval-

uation with a larger andmore diverse dataset. We can also

expand the idea of dialog communication with more ad-

vanced patterns.

Acknowledgement: This work was supported by Project

VEGA No. 1/0762/19 Interactive pattern-driven language

development.

References
[1] Bloch J. How to design a good API and why it matters. In Com-

panion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications, OOPSLA
’06, pages 506–507. ACM, 2006.

[2] Desai A., Gulwani S., Hingorani V., Jain N., Karkare A., Marron
M., R S., and Roy S. Program synthesis using natural language.
In Proceedings of the 38th International Conference on Software
Engineering, ICSE ’16, pages 345–356. ACM, 2016.

[3] Freeman T. and Pfenning F. Refinement types for ML. In Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation, PLDI ’91, page 268–277,
New York, NY, USA, 1991. Association for Computing Machinery.

[4] Gulwani S. Dimensions in program synthesis. In Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles

https://developers.google.com/assistant
https://developer.apple.com/documentation/sirikit

Natural mapping between voice commands and APIs | 145

and Practice of Declarative Programming, PPDP ’10, pages 13–
24. ACM, 2010.

[5] Gvero T. and Kuncak V. Synthesizing Java expressions from free-
form queries. In Proceedings of the 2015 ACM SIGPLAN Inter-
national ConferenceonObject-OrientedProgramming, Systems,
Languages, and Applications, OOPSLA 2015, pages 416–432.
ACM, 2015.

[6] Hirzel M., Mandel L., Shinnar A., Simeon J., and Vaziri M. I can
parse you: Grammars for dialogs. In 2nd Summit on Advances
in Programming Languages (SNAPL 2017), volume 71 of LIPIcs,
pages 6:1–6:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, 2017.

[7] Jaccard P. The distribution of the flora in the alpine zone. New
Phytologist, 11(2):37–50, 1912.

[8] Knöll R., Gasiunas V., and Mezini M. Naturalistic types. In Pro-
ceedings of the 10th SIGPLAN Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, On-
ward! 2011, pages 33–48. ACM, 2011.

[9] Landhäußer M., Weigelt S., and Tichy W. F. NLCI: A natural lan-
guage command interpreter. Automated Software Engineering,
24(4):839–861, Dec. 2017.

[10] Le V., Gulwani S., and Su Z. SmartSynth: Synthesizing smart-
phone automation scripts from natural language. In Proceeding
of the 11th Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’13, pages 193–206. ACM,
2013.

[11] Little G. and Miller R. C. Translating keyword commands into
executable code. In Proceedings of the 19th Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’06,
pages 135–144. ACM, 2006.

[12] Little G. and Miller R. C. Keyword programming in Java. In
Proceedings of the 22nd IEEE/ACM International Conference on
Automated Software Engineering, ASE ’07, pages 84–93. ACM,
2007.

[13] Lugosch L., Ravanelli M., Ignoto P., Tomar V. S., and Bengio Y.
Speech model pre-training for end-to-end spoken language un-
derstanding. In Proceedings of Interspeech 2019, pages 814–
818. ISCA, 2019.

[14] Miller G. A. WordNet: A lexical database for English. Communi-
cations of the ACM, 38(11):39–41, Nov. 1995.

[15] Nguyen T., Rigby P. C., Nguyen A. T., Karanfil M., and Nguyen
T. N. T2API: Synthesizing API code usage templates fromenglish
texts with statistical translation. In Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, pages 1013–1017. ACM, 2016.

[16] Nosáľ M., Sulír M., and Juhár J. Source code annotations as for-
mal languages. In 2015 Federated Conference on Computer Sci-
ence and Information Systems (FedCSIS), pages 953–964, 2015.

[17] Porubän J., Forgáč M., and Sabo M. Annotation based parser
generator. In 2009 International Multiconference on Com-
puter Science and Information Technology, pages 707–714, Oct.
2009.

[18] Pulido-Prieto O. and Juárez-Martínez U. A survey of natu-
ralistic programming technologies. ACM Computing Surveys,
50(5):70:1–70:35, Sept. 2017.

[19] Rogowski A. Industrially oriented voice control system. Robotics
and Computer-Integrated Manufacturing, 28(3):303–315, June
2012.

[20] Stylos J. and Myers B. Mapping the space of API design deci-
sions. In Proceedings of the IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, VLHCC ’07, pages 50–
60. IEEE Computer Society, 2007.

[21] Sulír M., Bačíková M., Chodarev S., and Porubän J. Visual aug-
mentation of source code editors: A systematic mapping study.
Journal of Visual Languages&Computing, 49:46–59, Dec. 2018.

[22] Sulír M. and Porubän J. Designing voice-controllable APIs. In
Proceedings of the IEEE 15th International Scientific Conference
on Informatics, pages 393–398. IEEE, 2019.

[23] Yaghmazadeh N., Wang Y., Dillig I., and Dillig T. SQLizer: Query
synthesis from natural language. Proceedings of the ACM on
Programming Languages, 1(OOPSLA):63:1–63:26, Oct. 2017.

[24] Zamanirad S., Benatallah B., Chai Barukh M., Casati F., and Ro-
driguez C. Programming bots by synthesizing natural language
expressions into API invocations. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2017, pages 832–837. IEEE Press, 2017.

	1 Introduction í
	2 Mapping patterns
	2.1 Classes and methods
	2.2 Parameters
	2.2.1 Primitive and enumeration types
	2.2.2 Strings
	2.2.3 Collections
	2.2.4 Classes composed of members
	2.2.5 Other classes
	2.2.6 Handling multiple parameters

	2.3 Synonyms
	2.4 Part of speech recognition
	2.5 Fallback
	2.6 Composition
	2.7 Response
	2.8 Dialog

	3 Mapping process
	4 Evaluation
	4.1 Strengths and weaknesses
	4.2 Expressiveness

	5 Related Work
	6 Conclusion

