
JaMaBuild: Mass Building of Java Projects
Matúš Sulír

Technical University of Košice
Košice, Slovakia

matus.sulir@tuke.sk

Milan Nosáľ
ValeSoft, s.r.o.
Košice, Slovakia

milan.nosal@gmail.com

Abstract
Many large-scale Java empirical studies require not only
source code but also resulting binaries such as JAR files. Pre-
compiled datasets quickly become obsolete, and the creation
of a custom corpus for every study is tedious. We present
a prototype of JaMaBuild, a tool and a framework for mass
building of Java projects from source. Given a list of projects
and optional settings, it downloads the projects, filters them
by user-definable criteria, builds themusingMaven or Gradle,
and collects outputs such as JAR files and build logs. Our
tool can also be used for local build breakage studies.

CCS Concepts: • Software and its engineering → Com-
pilers; Software configuration management and version con-
trol systems; Object oriented languages.

Keywords: Java, build tool, Maven, Gradle, corpus
ACM Reference Format:
Matúš Sulír and Milan Nosáľ. 2023. JaMaBuild: Mass Building of
Java Projects. In Companion Proceedings of the 2023 ACM SIGPLAN
International Conference on Systems, Programming, Languages, and
Applications: Software for Humanity (SPLASH Companion ’23), Oc-
tober 22–27, 2023, Cascais, Portugal. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3618305.3623613

1 Introduction
In programming languages and software engineering re-
search, a corpus of Java projects is often needed. Automati-
cally downloading the source code of many projects is fairly
trivial. However, the same cannot be said about the resulting
binary artifacts often required for certain types of analyses,
e.g., JAR files with transitive dependencies. For this reason,
multiple preconstructed datasets of binary Java projects ex-
ist, including Qualitas.class [4], XCorpus [1], and 50K-C [2].
However, due to the fast pace of progress, pre-built datasets
quickly become outdated. Furthermore, the criteria that the
authors used to sample the projects do not always match the
researchers’ requirements. Although NJR [3] provides a way

SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Companion Proceedings of the 2023 ACM SIGPLAN International Confer-
ence on Systems, Programming, Languages, and Applications: Software for
Humanity (SPLASH Companion ’23), October 22–27, 2023, Cascais, Portugal,
https://doi.org/10.1145/3618305.3623613.

to update the corpus, it does not utilize build tools such as
Maven and is based on the plain javac compiler with a class
file search on failures, which has its shortcomings, such as
producing different JARs than the original projects’ scripts.

If researchers decide to construct a corpus by themselves
specifically for their study, it tends to take a disproportion-
ately large part of the time, and the resulting ad-hoc scripts
are often unreadable and error-prone. The generic process
outline of project filtering, source building, and artifact col-
lection tends to be the same, while only specific details differ.
Our aim is to partially standardize their definition.

Therefore, in this paper, we present an early prototype of
JaMaBuild – amass builder of Java projects. It supports down-
loading the source code of projects from multiple sources,
filtering them according to various criteria, building the
projects using Maven or Gradle, saving the build logs, col-
lecting the resulting binary artifacts, and other features.
We see two groups of envisioned users: i) Software engi-

neering researchers in general will be able to easily construct
a custom, up-to-date dataset of binary Java projects. ii) Re-
searchers in the area of build tool breakage and repair will be
able to collect and analyze local build logs and other artifacts.
The tool, including a screencast with a planned demon-

stration, is available at https://github.com/sulir/jamabuild.

2 Tool Description
JaMaBuild is based on the principle of “convention over
configuration” as it defines the directory structure and file
formats and also provides sensible defaults for all configu-
ration options. A mandatory input file is a list of projects
with one project definition per row. An optional YAML file
contains various settings. Now we will describe the stages
of a build process execution for one specific project in detail.

Container Starting. We isolate individual builds by run-
ning one Docker container per project. JaMaBuild provides
a default Docker image, sulir/jamabuild, that contains Java
Development Kit, Maven, Gradle, and basic Linux utilities.
For cases when it does not suffice, users can create a custom
image and define it in the configuration file.

Project Source Code Loading. Every line in the project
list file consists of a tab-separated source type and a project
identifier (URL). The source type defines how the project
will be downloaded, extracted, or located. Currently, we sup-
port the “local”, “git” and “github” source types. For exam-
ple, in the case of “local google_guava”, the source code

https://orcid.org/0000-0003-2221-9225
https://orcid.org/0000-0002-8831-9440
https://doi.org/10.1145/3618305.3623613
https://doi.org/10.1145/3618305.3623613
https://github.com/sulir/jamabuild


SPLASH Companion ’23, October 22–27, 2023, Cascais, Portugal Matúš Sulír and Milan Nosáľ

was already downloaded by an external tool and is present
in the directory projects/google_guava/source. For “github
apache/commons-lang”, the project is cloned from GitHub
into a directory with an automatically derived name.

Pre-Build Filtering. Empirical studies define inclusion
and exclusion criteria for the analyzed projects. We suppose
simple criteria, such as the creation date, were already ap-
plied using external APIs and tools before the construction
of the project list, so we focus on the advanced ones.
Each criterion in the configuration file has a name and

an optional parameter. Examples of currently supported cri-
teria include: i) BashScript: A user-supplied script is exe-
cuted in the container. The project is included or excluded
based on the exit code. ii) SourceFile: A check if the source
code contains a file matching the glob pattern. For instance,
“preExclude: [’SourceFile *.jj’]” excludes projects con-
taining a file with the extension “jj”. Text content inside the
files can be searched too. iii) AndroidSource: We search for
Java source code files containing the import of Android API.
In practice, many possible criteria exist. JaMaBuild thus

also acts as a framework and a collection of reusable filtering
criteria, where individual researchers can easily write their
own in Java and optionally send us a pull request.

Project Building. Next, the project is built from source
code using Maven or Gradle. JaMaBuild determines the used
build tool based on the presence of a build configuration
file in the project’s root directory: pom.xml for Maven and
build.gradle (.kts) for Gradle. If no such file is present, the
build is considered failed. In the future, we might include fall-
back strategies, e.g., compiling all files directly using javac.
A command assigned to the given build tool is executed,

e.g., for Maven, mvn -B clean package compiles the project
and creates the resulting artifacts. Standard output and error
are redirected to the build log file. After the process finishes,
the name of the build tool and the exit code (representing
success or failure) are written in the results file. Upon failure,
we stop the container and continue with the next project.

By default, test execution is skipped as JAR files can often
be analyzed even if one of the tests fails. If desirable, e.g., for
test failure studies, tests can be enabled using an option.

The duration of one build is limited to one hour by default
to prevent stalling. This timeout can be configured too.

Artifact Collection. After a successful build, the result-
ing JAR files are saved in build-tool-specific locations, such
as multiple directories named target anywhere inside the
project’s source tree. Since consistency is one of the key
properties of a software corpus, the resulting artifacts are
moved to the jars directory inside the project’s root.

Many analyses require the project’s full transitive depen-
dencies. Therefore, they are copied into the deps directory.

Maven has a special goal for this, which we used with advan-
tage. For Gradle, we copy files from the dependency cache.

Post-Build Filtering. Some inclusion and exclusion crite-
ria cannot be evaluated until the project is successfully built.
Thus another round of filtering occurs at this stage. Such fil-
ters include: i) UnresolvedReferences: Unresolved references
in the JAR files cause problems, e.g., during call graph con-
struction. We determine their presence using the jdeps tool.
ii) NativeMethods: We find out if at least one native method
definition is present in the project’s classes and dependencies.
iii) BashScript: Each criterion is marked with its expected
usage phase (pre-/post-build). Some of them, including script
execution, are generic enough to be usable for both stages.

Container Stopping. Finally, the container is stopped
and the execution continues with the next project. Since the
list of projects potentially contains thousands of items, we
restart incomplete project builds in case of interruption.

3 Future Work
As an evaluation, we plan to re-create an existing corpus from
one of our previous empirical studies with JaMaBuild. Instead
of using a long and unreadable shell script, we will aim to
rewrite it as a list of projects and a simple configuration file.
Each time we will need custom filters or other new features,
we will add them to our tool, having more general scenarios
in mind. Next, we could try replicating our previous studies
on local build breakage prevalence and reasons similarly.

We have many ideas for improvement: parallelization, sup-
port for more input sources (GitLab, local tarballs) and build
tools (Ant), etc. We also envision that JaMaBuild could be-
come a framework for automatic build script repair strategies.
If a build fails, multiple corrections of the build configuration
files will be performed until it eventually succeeds.

Acknowledgments
This work was supported by project VEGA No. 1/0630/22
Lowering Programmers’ Cognitive Load Using Context-De-
pendent Dialogs.

References
[1] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus–

an executable corpus of Java programs. J. Obj. Tech. 16, 4 (2017), 1:1–24.
[2] Pedro Martins, Rohan Achar, and Cristina V. Lopes. 2018. 50K-C: A

Dataset of Compilable, and Compiled, Java Projects. In Proceedings of
MSR 2018. ACM, 1–5. https://doi.org/10.1145/3196398.3196450

[3] Jens Palsberg and Cristina V. Lopes. 2018. NJR: A Normalized Java Re-
source. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops.
ACM, 100–106. https://doi.org/10.1145/3236454.3236501

[4] Ricardo Terra, Luis Fernando Miranda, Marco Tulio Valente, and
Roberto S. Bigonha. 2013. Qualitas.class Corpus: A Compiled Version
of the Qualitas Corpus. SIGSOFT Softw. Eng. Notes 38, 5 (2013), 1–4.
https://doi.org/10.1145/2507288.2507314

https://doi.org/10.1145/3196398.3196450
https://doi.org/10.1145/3236454.3236501
https://doi.org/10.1145/2507288.2507314

	Abstract
	1 Introduction
	2 Tool Description
	3 Future Work
	Acknowledgments
	References

