
Outside the Sandbox: A Study of Input/Output Methods in Java
Matúš Sulír

matus.sulir@tuke.sk
Technical University of Košice

Košice, Slovakia

Sergej Chodarev
sergej.chodarev@tuke.sk

Technical University of Košice
Košice, Slovakia

Milan Nosáľ
milan.nosal@gmail.com

ValeSoft, s.r.o.
Košice, Slovakia

ABSTRACT
Programming languages often demarcate the internal sandbox, con-
sisting of entities such as objects and variables, from the outside
world, e.g., files or network. Although communication with the
external world poses fundamental challenges for live programming,
reversible debugging, testing, and program analysis in general, stud-
ies about this phenomenon are rare. In this paper, we present a
preliminary empirical study about the prevalence of input/output
(I/O) method usage in Java. We manually categorized 1435 native
methods in a Java Standard Edition distribution into non-I/O and
I/O-related methods, which were further classified into areas such
as desktop or file-related ones. According to the static analysis of a
call graph for 798 projects, about 57% of methods potentially call
I/O natives. The results of dynamic analysis on 16 benchmarks
showed that 21% of the executed methods directly or indirectly
called an I/O native. We conclude that neglecting I/O is not a viable
option for tool designers and suggest the integration of I/O-related
metadata with source code to facilitate their querying.

CCS CONCEPTS
• Software and its engineering → Object oriented languages;
Input / output; • General and reference→ Empirical studies.

KEYWORDS
Java, native methods, input/output (I/O), empirical study, static
analysis, dynamic analysis
ACM Reference Format:
Matúš Sulír, Sergej Chodarev, and Milan Nosáľ. 2023. Outside the Sandbox:
A Study of Input/Output Methods in Java. In Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering (EASE
’23), June 14–16, 2023, Oulu, Finland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3593434.3593501

1 INTRODUCTION
In many contemporary programming languages, programs are ex-
ecuted inside a virtual machine that separates two worlds: the
internal sandbox and the external environment. The internal sand-
box consists of executable code and data, such as classes, objects
and their fields on the heap, local variables on the stack, etc. The
external environment is accessible by calling input/output (I/O)
methods designated for file manipulation, inter-process commu-
nication, and the utilization of other operating system services.
In imperative programming languages such as Java, non-I/O and

EASE ’23, June 14–16, 2023, Oulu, Finland
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
International Conference on Evaluation and Assessment in Software Engineering (EASE
’23), June 14–16, 2023, Oulu, Finland, https://doi.org/10.1145/3593434.3593501.

I/O constructs can interleave without restrictions. This simplifies
programming from the cognitive viewpoint, but it has far-reaching
consequences for the design of advanced development tools.

As a motivational example, consider the live programming envi-
ronment SEEDE by Reiss et al. [11]. First, the developer chooses a
method of interest and places a special breakpoint in it. When the
program reaches the beginning of this method during execution in
a debugger, a snapshot of the complete Java Virtual Machine (JVM)
process at this point is created. Now the developer can modify the
source code of the method and re-run it, using the saved snapshot
as an entry point. The modification and re-running of the method
can be repeated multiple times (manually or potentially after every
keystroke), each time offering a view of the method’s effects on the
program state in the debugger.

As long as the method of interest contains only non-I/O con-
structs, the tool works perfectly. Consider this example:

public void computeHeader() {

byte[] header = {0, 0, 0};

if (flag)

header[0] = 1 << 4;

...

}

Then the developer decides to add an I/O method call:

public void computeHeader() {

byte[] header = {0, 0, 0};

if (flag)

header[0] = 1 << 4;

...

fileStream.write(header);

}

From this moment, using the live programming approach can
have unintended consequences. Re-running the method multiple
times writes duplicate headers to the file, resulting in corrupted
data.

The best way to deal with this problem is to design special han-
dlers for every I/O call. For instance, standard file manipulation
routines could be intercepted by writing all changes into a tem-
porary overlay file system and discarding them after each reset
of the internal program state. The creation of such handlers is an
expensive task though. Furthermore, some I/O operations cannot be
practically intercepted and reversed in general: consider an HTTP
POST request that modifies data on a third-party server.

Therefore, we might ponder how widespread is this problem.
Would it not be possible to simply disregard it? If a vast majority of
Java methods did not invoke any I/O calls, live programming would
be usable to a great extent even without special handlers.

https://orcid.org/0000-0003-2221-9225
https://orcid.org/0000-0002-9293-0859
https://orcid.org/0000-0002-8831-9440
https://doi.org/10.1145/3593434.3593501
https://doi.org/10.1145/3593434.3593501


EASE ’23, June 14–16, 2023, Oulu, Finland Sulír et al.

Although we explained the issue using a live programming exam-
ple, it is certainly not limited to it. Analogous fundamental problems
occur in reversible debugging [9], software testing (e.g., automated
test generation [1] and mocking), and many other areas.

Despite their importance, I/O methods themselves have rarely
been studied empirically so far. Rocha et al. [12] analyzed the energy
behavior of a small number of selected Java I/O APIs. Grichi et al.
[6] qualitatively analyzed usage practices of native methods, i.e.,
Java Native Interface, without specifically considering I/O methods,
which represent only their subset. Figueroa et al. [5] studied the
prevalence of monads, including the IO monad, in the functional
programming language Haskell.

To the best of our knowledge, this is the first study on the preva-
lence of I/O methods in an imperative language. Therefore, we
would like to answer the following research questions in this paper:
RQ1 How can native methods present in the Java Runtime Envi-
ronment (JRE) be categorized with respect to their I/O effects?
RQ2 What portion of methods in Java projects potentially call I/O
natives according to static analysis?
RQ3 What portion of methods executed in a sample of Java bench-
marks actually call I/O natives?

2 CLASSIFICATION OF NATIVE METHODS
In Java, the only way to figuratively break the sandbox and com-
municate with the outside world (I/O) is through native methods –
methods marked with the native keyword and implemented in C
or C++. On the other hand, not all native methods represent I/O
actions. Some of them are native merely because of performance
optimization or to provide advanced reflective operations. To an-
swer RQ1, we manually categorized native methods into I/O and
non-I/O ones.

2.1 Method
We focused only on natives contained directly in the Java Develop-
ment Kit (JDK), not developer-written native methods packaged
as dynamic libraries with specific projects. As a reference imple-
mentation, we chose the latest available long-term release, Eclipse
Temurin 17 for Linux1. From this distribution, we created a custom
JRE containing only modules named java.*, i.e., modules belong-
ing to Java Standard Edition (SE) Platform plus java.smartcardio.
This JRE was used throughout the rest of the study.

From the mentioned JRE, we extracted all native methods, includ-
ing the private and package-private ones, using bytecode analysis.
This resulted in a list of 1435 methods across 8 modules.

Instead of merely marking the methods as I/O or non-I/O, we de-
cided to divide them into more specific categories, such as desktop-
related or filesystem operations. To construct a set of categories
and agree on their definitions, we first performed a pilot study on a
small subset of methods. The first author tagged each of these meth-
ods using open qualitative coding [13], i.e., without having a fixed
set of codes. He gradually merged and modified them to a set of
fixed categories, with each method pertaining only to one category.
The second and third authors tagged the methods by closed coding,
using this preliminary set of possible categories, while also noting

1jdk-17.0.6+10, Linux x64 from https://adoptium.net/temurin/releases/

possible ambiguities. Then all three authors mutually resolved their
disputes and agreed on the set of categories and their definitions.

Next, all 1435 methods were categorized by the first author. At
the same time, the second and third authors classified a random
subset of 25% and 75% methods, respectively. Each method was
therefore independently categorized by two different researchers.

Finally, all three researchers met and resolved their disputes by
mutual agreement. At this meeting, minor changes to the taxonomy
itself were also performed, such as merging two similar categories.

During the whole classification process, all researchers used the
following guidelines. First, they considered the name of the cor-
responding class and method together with their documentation.
Next, they searched for their callers in the Java code to get an intu-
ition about their usage. Finally, they inspected the C or C++ code
implementing the given method. Logging statements, such as asser-
tions, were excluded from the analysis since they are disabled by
default. If the method could pertain to more than one I/O category,
we chose the more specific one, e.g., reading a desktop environment
configuration file was categorized as “desktop” instead of “files”.

2.2 Results
Table 1 displays the final set of categories of native Java meth-
ods, along with their descriptions and the counts of corresponding
methods in the analyzed JRE.

The first category, “non-io”, contains methods not representing
communication with the outside world. Except for classic cases
such as algorithmic optimization or reflection, we also included,
perhaps controversially, threading and classloading in this category.

Although threading is often implemented using operating system
threads, the JVM Specification does not prescribe this. Furthermore,
threads are omnipresent in Java: every thread can be paused and
resumed at arbitrary times, which leads to situations such as race
conditions. These are the subject of a multitude of studies and are
out of our scope. Finally, we suppose the designers of tools such
as live programming environments will pose restrictions on the
threading behavior, e.g., enable the debugging of only one thread
while the rest are suspended.

Classloading can be, and often is, performed lazily in Java. This
means it is highly non-deterministic: calling an innocent-looking
method can invoke a custom classloader that performs a network
request to load a given class since it is used for the first time during
the application execution. We suppose tool authors will implement
an eager classloader loading classes only from a fixed set of local
JAR files – which we consider to be a part of the Java’s sandbox.

The second category in Table 1, “invocation”, consists of natives
whose purpose is to call an arbitrary user-supplied method. Such
a method could be an I/O or non-I/O one, and we cannot deter-
mine this beforehand. To maximize soundness, we consider the
“invocation” category to be part of the I/O natives during static
analysis. During dynamic analysis, we consider it non-I/O because
the captured call stack includes information about specific native
methods called using reflection.

The remaining five categories represent various I/O-related calls:
“desktop”, “time”, “files”, “network”, and “os” (miscellaneous operat-
ing system operations). Each category has certain specifics from
the viewpoint of tool developers, especially of live programming

https://adoptium.net/temurin/releases/


Outside the Sandbox: A Study of Input/Output Methods in Java EASE ’23, June 14–16, 2023, Oulu, Finland

Table 1: The Categories of Native Methods

Category Description Count
non-io Code that bridges the pure Java code with the native space inside the current JVM process. This includes optimized

algorithm implementations, reflection, classloading, threading, native data structure initialization, no-ops, etc.
623

invocation An operation representing an arbitrary reflective method invocation. Such a method could be I/O or non-I/O, but
we cannot determine this with static analysis in general.

17

desktop Desktop-related operations: drawing to screen or graphics card’s buffers, manipulating windows and widgets,
processing keyboard and mouse input, playing sounds, printing, etc.

416

time Operations related to current system time, time measurement, and time zones. 28
files Operations on standard files, directories, and file systems. 135
network Operations for communication with other processes via network, sockets, or pipes and methods related to network

adapters.
111

os Miscellaneous operating system calls, such as methods related to resource limits, security, processes, environment
variables, shared memory, etc.

105

environments. For instance, system time could be simulated if nec-
essary. File operations could be possibly replaced by an overlay file
system. On the other hand, simulating network calls is practically
impossible in general, as we already mentioned.

3 STATIC ANALYSIS OF I/O CALLS
In this section, we will determine what portion of methods in Java
projects can directly or indirectly call native JREmethods, especially
the I/O ones, to answer RQ2.

3.1 Method
The method consists of two parts: the construction of a corpus of
Java projects and their subsequent static analysis.

3.1.1 Dataset. Our aim is to statically analyze the call graphs of
Java projects down to the lowest layers of the JDK, so we need their
binary form, including complete dependencies. Since we chose a
recent JDK version in RQ1, the dataset has to be as up-to-date as
possible due to the incompatibilities introduces by new Java re-
leases [14]. Furthermore, we have special requirements on selected
properties of the dataset, e.g., it cannot contain non-JRE native
methods. Therefore, we opted for the creation of our own corpus.

We downloaded and built a set of open-source projects from
GitHub, using the following inclusion criteria:

I1 The main programming language of the project is Java.
I2 A machine-recognizable open-source license file is contained in
the repository.
I3 The repository has at least 10 stars. This is a limitation imposed
by the used search tool. At the same time, it can be considered a high-
precision strategy to include only engineered software projects and
exclude toy or sample projects and homework assignments [8].
I4 The repository contains an automated build configuration file in
its root directory. We focused on projects using Maven (pom.xml)
since it is the most popular build system for Java [14], and it offers a
consistent way to retrieve the built artifacts, including all transitive
dependencies.
I5 The project can be successfully built from source code using the
supplied configuration file on JDK 17 without manual intervention.

I6 The set of produced JAR files contains at least one entry point,
namely a mainmethod or a JUnit (versions 3 to 5) test method. This
was necessary since call graph construction algorithms require the
specification of entry points to function properly.

We further refined the set of projects using the following exclu-
sion criteria:
E1 Forks.
E2 Duplicates (based on the target JAR file names) that are not
explicitly marked as forks.
E3 Projects containing unresolved references to other classes in
the resulting binary files. This is necessary to construct call graphs
that are sound to the extent practically possible.
E4 Projects using Java Native Interface (JNI) via custom developer-
written methods. Since only methods included in the JRE were
manually categorized, we could not distinguish between the I/O
and non-I/O custom natives.
E5 Projects utilizing JDK modules not included in our custom JRE.
Again, such modules could contain native methods that were not
categorized.

To construct the dataset, we first obtained a list of all repositories
matching criteria I1–I3 and E1 using the GitHub Search tool by
Dabic et al. [4]. We downloaded the source code of repositories
matching I4 with GitHub API. Then we tried to automatically build
them (I5) using Maven in a Docker container having the necessary
tools installed. We checked criterion E2 with a shell script. The
JAR files including dependencies were checked for criteria I6 and
E4 using the javap disassembler, and criteria E3 and E5 with the
dependency analysis tool jdeps.

This process resulted in a list of 807 projects. Subsequent call
graph generation failed for 9 projects due to technical reasons. The
final dataset thus consists of 798 Java projects from diverse domains
and of various sizes, ranging from 2 to 14,621 methods per project
(not counting dependencies).

3.1.2 Static Analysis. As a next step, we performed static analy-
sis on the created corpus. We define the source method as a Java
method that is a part of the project itself (not the dependencies), is
not synthetic (generated by the compiler and missing in the origi-
nal source code), and is not a static initializer. We excluded class



EASE ’23, June 14–16, 2023, Oulu, Finland Sulír et al.

Table 2: The portions of analyzed/executed methods calling
native methods from a given category.

(a) static analysis

Category Portion
non-io 62.44%
invocation 56.71%
desktop 23.07%
time 56.91%
files 56.74%
network 56.71%
os 56.72%

(b) dynamic analysis

Category Portion
non-io 41.29%
invocation 6.70%
desktop 0.11%
time 18.75%
files 18.69%
network 0.78%
os 1.76%

initializers since we assume classloading is already finished before
the execution of each method, as we discussed in section 2.2. The
total number of source methods in the corpus was 550,727.

For every project, we constructed a whole-program static call
graph including its dependencies and our complete JRE.We used the
SPARK algorithm in the Soot library [16], which offers reasonable
precision without sacrificing scalability.

We define a reachable source method as an entry point (a main
method or a test) or a source method that can be directly or in-
directly called from at least one entry point. About 57.2% of the
source methods in our dataset were reachable.

For every reachable source method (sometimes abbreviated as a
caller in the following text), we determined a set of native methods
(natives) that can be directly or indirectly called from it. These sets
along with associated metadata were stored in a relational database
for further querying.

3.2 Results
From all reachable source methods, 62.6% can potentially call a
native method and 56.9% can call an I/O native method according
to the static analysis. This means I/O-involving methods are very
frequent, and neglecting them during any tool design is unaccept-
able.

In Table 2a, there is a list of the categories of natives along with
the percentages of reachable source methods that can potentially
call at least one native method from a given category. Non-I/O
native methods are the most frequent. Natives from five categories
(time, files, os, network, invocation) follow closely behind each
other. This means the I/O native methods in the JRE are highly
interconnected, and as soon as one of them is called, it is difficult to
distinguish with static analysis which kind of I/O call will be made.
Finally, desktop I/O methods are the least frequent ones since many
applications and libraries do not support or handle graphical user
interfaces.

4 DYNAMIC ANALYSIS OF I/O CALLS
To answer RQ3, we will describe the method and results of dynamic
analysis on a suite of Java benchmarks.

4.1 Method
As a basis to construct the corpus used for dynamic analysis, we
selected the DaCapo [3] benchmark suite2. It provides 22 nontrivial,
real-life workloads from various domains. First, we excluded 6
benchmarks incompatible with our JRE. Next, to make dynamic
analysis feasible despite the dramatic slowdown it imposes, we
filtered the associated data for each benchmark to include only the
“small” size. The resulting set of 16 benchmarks is available online3.

We executed each benchmark in a debugging mode and traced
all method entry events. Every time a method was called, we added
it to a set of executed methods unless it was a static initializer,
a JRE built-in, synthetic, or abstract method. Whenever a native
method was called, we obtained the current call stack and marked
all methods present in it as its callers.

Five benchmarks failed due to timeouts but we included them in
the results since they represent valid real-life workloads too. The
results were saved to a database for querying.

4.2 Results
From all non-excluded executed methods, 41.9% called a native
method and 21.4% called an I/O native. This confirms that I/O
methods are frequently called on actual workloads.

The portions of executed native methods for each category are
shown in Table 2b. The most frequent categories are “time” and
“files”, which is understandable since the synopsis of many bench-
marks is to load files and measure the time of their processing.

5 DISCUSSION
Now we will take a closer look at the results and discuss possible
reasons and implications.

First, from the project-based view, we might ask whether there
are differences in the proportion of I/O callers among projects.
For example, a mathematical library should call I/O natives only
scarcely, while in a network monitor, they could be almost om-
nipresent. Figure 1 displays a distribution of the percentages of
I/O-calling methods for individual projects, determined using static
analysis. The portions are approximately normally distributed, with
the exception of the left and right extremes. The left extreme is
represented mainly by collections of algorithms and projects for
which the static analysis was unable to detect I/O calls despite their
presence. The right extreme contains various smaller utilities, rang-
ing from test framework extensions to simple data format parsers,
often with a low number of reachable methods.

The dynamic analysis results of the project-based view were
more uniform. The portion of I/O callers ranged from 17% of the
executed methods for H2 (an SQL database) to 36% for GraphChi
(a disk-based graph computation system). Twelve of the 16 bench-
marks had the I/O callers portion between 18 and 25%.

Next, we would like to look at the relationship between the size
of a method and the likelihood that it is a potential I/O caller. In
Figure 2, there are method sizes on the x-axis, measured in abstract
units, where one unit represents a statement such as a variable
assignment or a method call. The right side is cropped due to larger

2commit 0413279
3https://osf.io/2jqpv

https://github.com/dacapobench/dacapobench/tree/04132797de831d3e2afaf05c03a3dfdfe3991e8d
https://osf.io/2jqpv


Outside the Sandbox: A Study of Input/Output Methods in Java EASE ’23, June 14–16, 2023, Oulu, Finland

0

10

20

30

40

50

Percentage of I/O-calling methods

Nu
m

be
r o

f p
ro

je
ct

s

Figure 1: The distribution of I/O callers percentage per project
(static analysis)

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
0

10000

20000

30000

40000

50000 Calling I/O Not calling I/O

Method size (units)

Nu
m

be
r o

f m
et

ho
ds

Figure 2: The number of reachable source methods calling
and not calling I/O per method size (static analysis)

method sizes occurring rarely. On the y-axis are numbers of meth-
ods that potentially call or do not call I/O natives, as determined by
static analysis. We can see that extremely short methods are usu-
ally non-I/O ones, while moderately-sized methods call I/O natives
more often.

Taking into account only methods with at least five units, which
we might consider a threshold for a non-trivial method worth de-
bugging with advanced tools, 72.8% of them potentially call I/O
natives. Similarly, according to the dynamic analysis, 27.8% of exe-
cuted methods larger than 10 bytes (of bytecode) called I/O natives.
This further confirms the fact that neglecting I/O is not an option.

Finally, we inspected a list of the specific most frequently called
native methods per category in our classification. Many groups
of methods had the same static caller counts, which confirmed
our intuition that distinguishing which specific I/O call will be
performed at runtime with static analysis is difficult in general. A
typical example is a blurry line between files and network in Linux
since both of them are represented by file descriptors in the kernel,
which is reflected also in the JDK internals. Special files such as
Unix domain sockets and pipes make the distinction even less clear.

For dynamic analysis, the differences in caller counts varied
much more. The most frequent I/O methods were related to obtain-
ing precise system time, along with seeking and reading files. Of
course, the results are workload-specific.

6 THREATS TO VALIDITY
Construct Validity. Static analysis is inherently imprecise, and

the portion of methods that actually invoke an I/O action during a
particular execution is typically lower than the number of methods
that potentially call them, as we showed. However, in Java, static
analysis is also unsound. We observed two main reasons in our
study. First, the analyzer can miss non-trivial reflective calls. We
coped with this issue by creating a special category, “invocation”,
that represents executions of arbitrary methods via reflection, and
counting it as a potential I/O call. Second, if a final member variable
is assigned the value of null and then overwritten in native code
(which is possible), the static analyzer does not register any method
calls on this field. Solving this problem in general is difficult since
native code is opaque to a Java static analyzer. The mentioned prob-
lem concerns variables such as System.out, providing standard
I/O stream facilities. The impact of this issue on the results should
be studied in future work.

Internal Validity. During the creation of the static analysis dataset,
we used multiple inclusion and exclusion criteria that limited the
set of analyzed repositories to a relatively small number of projects
with restricted properties. However, we provided a reasonable ra-
tionale for each criterion. One of the criteria that shrank the project
count the most was the ability to be automatically built with JDK
17. This was often caused by the incompatibility of older projects
with newer JDK versions. While we could focus on an older release,
we opted for the latest long-term support version since a lot of man-
ual effort was put into categorization, which could soon become
obsolete in such a case.

External Validity. The study was limited to Java, which marks
methods allowed to directly perform I/O with its native keyword.
Although probably less elegant, similar studies could be performed
also in other languages.

All parts of the study were limited not only to a specific JDK ver-
sion but also to an operating system, as a part of native methods is
platform-specific. Although a similar study could be performed, e.g.,
for a Windows version of JDK 20, we would not expect dramatically
different results.

The results of the dynamic analysis highly depend on the fact
that benchmarks were selected as the studied programs. However,
this could be also true, e.g., for unit tests since they often mock
I/O. Ideally, we should execute a diverse set of automated work-
loads ranging from mathematical computation to user interface
manipulation, which is difficult to obtain.

Reliability. The categorization of the list of native JRE methods
was performed manually, which could cause subjectivity in the
results. However, we performed a pilot study to reveal the differ-
ences in the reasoning of individual researchers and provided clear
definitions of each category. Most importantly, each native method
was categorized independently by two researchers, and the final
decision was performed by mutual agreement.

The automated part of our study is fully reproducible. We pub-
lished the full source code at https://github.com/sulir/iostudy and
the data in a permanent repository at https://doi.org/10.17605/OSF.
IO/CNSRJ.

https://github.com/sulir/iostudy
https://doi.org/10.17605/OSF.IO/CNSRJ
https://doi.org/10.17605/OSF.IO/CNSRJ


EASE ’23, June 14–16, 2023, Oulu, Finland Sulír et al.

7 RELATEDWORK
A study by Rocha et al. [12] focused on a small number of I/O
methods, namely 22 methods for reading and writing to streams.
They analyzed their energy behavior and tried to improve it using
a set of micro-benchmarks. Figueroa et al. [5] studied the usage of
monads in Haskell. It is, however, a purely functional programming
language that strictly separates I/O and non-I/O code.

A study by Grichi et al. [6] offers a view into usage practices
of Java Native Interface. By manual analysis of 100 open-source
projects, they constructed a list of common patterns that devel-
opers utilize when connecting Java code with the native C/C++
implementation. They did not consider I/O methods in any way.

Mastrangelo et al. [7] focused on the Java Unsafe API, which
is implemented using native methods and offers to bypass Java’s
security mechanisms when accessing memory. The authors studied
the prevalence of this API and its usage practices. Similarly, Tan
and Croft [15] analyzed the usage of native code in JDK from a
security perspective, without considering I/O methods specifically.

The authors of ChroniclerJ [2], a reversible debugger, also faced
an issue that not all nativemethods in Java represent I/O calls, which
they solved by manual annotation too. However, their goal was
broader since they needed to distinguish between deterministic and
non-deterministic methods in general. They also analyzed the list of
public API methods potentially connected with the (often private)
native methods, so their list was much longer, which also resulted
in its incompleteness. Finally, the JDK version they analyzed is no
longer supported.

8 CONCLUSION
In this paper, we presented a preliminary empirical study on the
prevalence of I/O calls in Java projects. We manually divided a
list of native Java methods in a selected JRE into seven categories,
some of which we considered I/O. According to the static analysis
results on a corpus of Java projects, 57% of reachable source meth-
ods potentially communicate with the world outside the sandbox
using I/O. During a dynamic analysis on a benchmark suite, 21%
of executed methods actually called I/O. These numbers are even
higher when considering only non-trivial methods or when taking
into account the potential unsoundness of static analysis.

Discerning natives that potentially perform I/O operations from
natives operating inside the virtual machine is a common problem.
The list of the categorized JRE methods is thus available as a part
of the dataset at https://doi.org/10.17605/OSF.IO/CNSRJ.

In many software engineering sub-areas, but particularly in the
live programming community [10], I/O is rarely taken into account
when designing tools (with very few exceptions, such as the men-
tioned SEEDE [11]). Therefore, we conclude tool authors cannot
neglect I/O actions since they are almost omnipresent in program-
ming languages such as Java.

Statically analyzing the I/O effects using whole-program analysis
is difficult due to the interconnection of methods that implement
them. Therefore, we propose the creation of special annotations
for marking methods potentially performing input/output, e.g., @IO
(alternatively, marking the rest of them @NonIO). Currently, analo-
gous annotations exist for nullable/non-null values, pure methods
that do not modify the state of objects, and many other contracts.

As a final motivation, having a clear distinction between I/O or
non-I/O methods, e.g., with the help of the mentioned annotations,
could make program analysis faster and more precise. For example,
unit test generators would more easily know which parts of the
system to mock. We could also query the development environ-
ment if the given method is non-I/O and can be safely used for
live programming, especially if dangerous operations such as file
deletion were noted using corresponding annotation parameters.

ACKNOWLEDGMENTS
This work was supported by project VEGA No. 1/0630/22 Lowering
Programmers’ Cognitive Load Using Context-Dependent Dialogs.

REFERENCES
[1] Andrea Arcuri, Gordon Fraser, and Juan Pablo Galeotti. 2014. Automated Unit

Test Generation for Classes with Environment Dependencies. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software Engineering (ASE
’14). ACM, New York, NY, USA, 79–90. https://doi.org/10.1145/2642937.2642986

[2] Jonathan Bell, Nikhil Sarda, and Gail Kaiser. 2013. Chronicler: Lightweight
Recording to Reproduce Field Failures. In Proceedings of the 2013 International
Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,
362–371. https://doi.org/10.1109/ICSE.2013.6606582

[3] Stephen M. Blackburn et al. 2006. The DaCapo Benchmarks: Java Benchmarking
Development and Analysis. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications.
ACM, New York, NY, USA, 169–190. https://doi.org/10.1145/1167473.1167488

[4] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling Projects
in GitHub for MSR Studies. In 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR). 560–564. https://doi.org/10.1109/MSR52588.
2021.00074

[5] Ismael Figueroa, Paul Leger, and Hiroaki Fukuda. 2021. Which monads Haskell
developers use: An exploratory study. Science of Computer Programming 201
(2021), 102523. https://doi.org/10.1016/j.scico.2020.102523

[6] Manel Grichi, Mouna Abidi, Yann-Gaël Guéhéneuc, and Foutse Khomh. 2019.
State of Practices of Java Native Interface. In Proceedings of the 29th Annual
International Conference on Computer Science and Software Engineering (CASCON
’19). IBM Corp., USA, 274–283.

[7] Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias
Hauswirth, and Nathaniel Nystrom. 2015. Use at Your Own Risk: The Java
Unsafe API in the Wild. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2015). ACM, New York, NY, USA, 695–710. https://doi.org/10.1145/
2814270.2814313

[8] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for Engineered Software Projects. Empirical Software Engineer-
ing 22, 6 (Dec. 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[9] Guillaume Pothier and Éric Tanter. 2009. Back to the Future: Omniscient Debug-
ging. IEEE Software 26, 6 (Nov. 2009), 78–85. https://doi.org/10.1109/MS.2009.169

[10] Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and Tobias Pape.
2018. Exploratory and Live, Programming and Coding: A Literature Study Com-
paring Perspectives on Liveness. The Art, Science, and Engineering of Programming
3, 1 (2018), 1:1–1:33. https://doi.org/10.22152/programming-journal.org/2019/3/1

[11] Steven P. Reiss, Qi Xin, and Jeff Huang. 2018. SEEDE: Simultaneous Execution
and Editing in a Development Environment. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (ASE 2018). ACM,
New York, NY, USA, 270–281. https://doi.org/10.1145/3238147.3238182

[12] Gilson Rocha, Fernando Castor, and Gustavo Pinto. 2019. Comprehending
Energy Behaviors of Java I/O APIs. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM). 1–12. https:
//doi.org/10.1109/ESEM.2019.8870158

[13] Johnny Saldaña. 2016. The Coding Manual for Qualitative Researchers (3rd ed.).
SAGE Publishing.

[14] Matúš Sulír, Michaela Bačíková, Matej Madeja, Sergej Chodarev, and Ján Juhár.
2020. Large-Scale Dataset of Local Java Software Build Results. Data 5, 3 (2020),
86. https://doi.org/10.3390/data5030086

[15] Gang Tan and Jason Croft. 2008. An Empirical Security Study of the Native
Code in the JDK. In Proceedings of the 17th USENIX Security Symposium (SS’08).
USENIX Association, USA, 365–377.

[16] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization Framework. In
CASCON First Decade High Impact Papers (CASCON ’10). IBM Corp., USA, 214–
224. https://doi.org/10.1145/1925805.1925818

https://doi.org/10.17605/OSF.IO/CNSRJ
https://doi.org/10.1145/2642937.2642986
https://doi.org/10.1109/ICSE.2013.6606582
https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1109/MSR52588.2021.00074
https://doi.org/10.1016/j.scico.2020.102523
https://doi.org/10.1145/2814270.2814313
https://doi.org/10.1145/2814270.2814313
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3238147.3238182
https://doi.org/10.1109/ESEM.2019.8870158
https://doi.org/10.1109/ESEM.2019.8870158
https://doi.org/10.3390/data5030086
https://doi.org/10.1145/1925805.1925818

	Abstract
	1 Introduction
	2 Classification of Native Methods
	2.1 Method
	2.2 Results

	3 Static Analysis of I/O Calls
	3.1 Method
	3.2 Results

	4 Dynamic Analysis of I/O Calls
	4.1 Method
	4.2 Results

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

