RuntimeSave: A Graph Database of Runtime Values

Matas Sulir
Technical University of Kosice
Kosice, Slovakia
matus.sulir@tuke.sk

Abstract

To persist variable values from running programs for de-
velopment purposes, we currently recognize two strategies.
Techniques based on examples are only useful to store small
sample objects, while record-and-replay techniques are ef-
ficient but use opaque storage formats. We lack a middle
ground offering acceptable scalability and easy queryabil-
ity with standard tools. In this work-in-progress paper, we
present RuntimeSave — a versatile approach to saving run-
time values from the Java Virtual Machine (JVM) into a
persistent Neo4j graph database. Its core idea is a two-layer
graph model consisting of hashed and metadata nodes, in-
spired by Git internals. To reduce the written data volume,
it packs certain object graph shapes into simpler ones and
hashes them to provide partial deduplication. We also re-
port a preliminary evaluation, applications, and future work
ideas.

CCS Concepts: « Software and its engineering — Soft-
ware maintenance tools; Object oriented languages; Virtual
machines; Integrated and visual development environments.

Keywords: Java Virtual Machine, runtime values, graph data-
base, debugging, persistence

ACM Reference Format:

Matas Sulir, Antonia Bertolino, and Guglielmo De Angelis. 2025.
RuntimeSave: A Graph Database of Runtime Values. In Proceed-
ings of the 17th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL ’25), October 12—-18,
2025, Singapore, Singapore. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3759548.3763375

1 Introduction

Traditionally, source code is persistent, whereas runtime val-
ues are dynamic and ephemeral. A few approaches aim to
bridge this gap. For instance, live programming [15] lets de-
velopers modify source code while runtime values remain in-
tact. Record-and-replay tools and omniscient (back-in-time)
debuggers persist the values for later execution reconstruc-
tion. However, these techniques treat the values as a means

VMIL °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 17th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL °25), October 12-18, 2025, Sin-
gapore, Singapore, https://doi.org/10.1145/3759548.3763375.

Antonia Bertolino
Gran Sasso Science Institute
L’Aquila, Italy
antonia.bertolino@gssi.it

Guglielmo De Angelis
IASI-CNR
Rome, Italy
guglielmo.deangelis@iasi.cnr.it

to an end, not as their primary focus. A notable exception
is the family of approaches known as Example Centric Pro-
gramming [7], Babylonian Programming [14], or Example
Objects [12]. Here, runtime values called examples are either
produced by manually written code snippets or collected
semi-automatically from executions. Example mining [9]
gathers runtime values from debugging sessions or tests and
saves them for later use. Example objects have a variety of
applications. For instance, source code lines can be visually
augmented with sample variable values to enhance program
comprehension [16]. Values can also be attached to a func-
tion as arguments to repeatedly execute it with the same
input and enable live programming [14].

To store the collected runtime values, example-based tools
often use structured text comments directly in the source
code [11]. This does not scale to numerous or large example
objects. Time-travelling debuggers and record-and-replay
tools [3, 4, 8] tend to utilize custom binary formats, which
are efficient in space and writing speed but difficult to query
with existing declarative languages. Relational databases
with SQL proved impractical for deep dynamic analysis [1].
A key-value database has been used but solely for objects’
string representations, not complete structures [16].

Object Graph Programming [17] maps a Java program’s
runtime state to a Neo4j graph. However, it is used merely
as temporary storage for querying with Neo4j’s Cypher lan-
guage, without persistence. Persistence raises issues such
as metadata assignment, storage space limitations, and time
efficiency in saving many similar objects, which our paper
addresses. Object databases [2], e.g., ObjectStore [10], persist
runtime values but are today limited to niche legacy deploy-
ments and have been superseded by object-relational and
object-graph mapping (ORM/OGM). Object databases are
tightly coupled to the host language and application, hinder-
ing ad-hoc querying and visualization with standard tools.
They also lack content-based object deduplication, which is
one of our goals. BOLD [13] models execution traces with
variables as RDF (Resource Description Framework) triples,
which are persistable in a database but less natural to query
than Neo4j’s property graph model.

In this paper, we present RuntimeSave: a middle ground be-
tween small-scale examples and large-scale execution record-
ing. It serves as universal queryable persistent storage of run-
time values collected from the JVM with associated metadata.
By runtime values, we mean concrete variable values — ei-
ther primitives or, more interestingly, complex objects. They


https://doi.org/10.1145/3759548.3763375
https://doi.org/10.1145/3759548.3763375

VMIL °25, October 12-18, 2025, Singapore, Singapore

come from various sources, ranging from manual curation
of interesting objects in debugging sessions to automated
sampling. Two methods improving scalability are described:
packing simplifies graph shapes, and content-based hashing,
inspired by Git, further reduces time and space requirements.
We also briefly introduce potential applications, including
querying, visualization, starting programs at any line, dis-
playing sample values for comprehension, API exploration,
unit test input generation, and runtime repository mining.

2 Storage Mechanism

RuntimeSave is currently designed as a debugger extension
of an Integrated Development Environment (IDE). It collects
data from a debugged application, creates an in-memory
Java object graph from them, applies packing, hashing, and
ID-hashing to minimize database writes, and saves necessary
data into a Neo4j graph database.!

2.1 Data Collection

Since the runtime values are present in the debugged appli-
cation’s process, separate from the IDE, we need to transport
them before further processing. For this, we use the Java De-
bug Interface (JDI). We distinguish three basic scenarios for
the collection of values from the application being executed:
manual object selection, savepoints, and sampling.
Manual Object Selection. Developers often encounter
objects of special interest. During debugging, it may be a set
of objects from which a faulty state can be reconstructed.
When designing a new API, it can be an exemplar case to
demonstrate many features. To support this, we should allow
the developer to manually select a given object in the object
inspector (Variables view) while the program is suspended
and save it with associated metadata, such as a descriptive
name or the current date. Later, when a need to load the
values arises (e.g., resuming a debugging session or viewing
documentation related to this object), we could easily query
the database for these objects based on the metadata.
Savepoints. While manually saving objects would be use-
ful, developers sometimes need an overview of multiple val-
ues occurring possibly at several code locations. For such
cases, major IDEs provide logpoints.? Instead of suspending
the program as breakpoints, a logpoint prints a message,
usually showing the values of variables at the given line.
We extend this idea with savepoints. Instead of printing
messages, savepoints store the values (full object graphs) of
all local variables in scope, including this, into Runtime-
Save’s database. Like breakpoints and logpoints, savepoints
can be customized with conditions, pass counts, caller filters,
and other usual options.
Sampling. For obtaining an overview of values occurring
throughout the program, RuntimeSave offers a sampling

https://neodj.com/
Zhttps://code.visualstudio.com/docs/debugtest/debugging# _logpoints

Matus Sulir, Antonia Bertolino, and Guglielmo De Angelis

mode. It suspends the program at every n-th executable line
for the first ¢ executions of that line and collects the values
of all local variables in scope. Both n and t are configurable.
A particularly useful setting is n = 1 and ¢t = 1, which we
call an all-lines collection mode. Such data are suitable for
visual augmentation of source code lines with sample vari-
able values [16]. Setting n = 1 and t = —1 (infinity) creates
a full execution recorder, though currently impractical for
non-trivial programs due to performance limitations.

By default, we only collect data from the current project,
excluding libraries and the standard Java API. Once collec-
tion from one line is complete, the data are processed in a
separate thread, allowing the program to resume execution.

2.2 Graph Model

While reading the values via JDI, they are transformed into
an in-memory graph representation consisting of plain Java
objects that closely resemble the database model. Disregard-
ing space and time constraints, such a graph could be written
to the database using straightforward object-graph mapping.

Neo4j is a database based on the property graph model,
which we briefly introduce using an address book example.
A property graph consists of nodes, each with zero or more
labels and properties. Labels, such as : Person, are analogous
to classes in Object-Oriented (OO) languages. Properties are
similar to attributes, e.g., {name: “Ed”, age: 1}.Nodes are
connected by directed edges called relationships, which have
a type (such as : HAS_ADDRESS) and optionally properties, e.g,
{type: “home”}. Relationships are analogous to references
between objects in OO languages.

Now let us focus on RuntimeSave’s graph model, whose
sample instance is shown in Figure 1. It has two layers:
hashed nodes (green, bottom) and optional metadata nodes
(grey background, top). This is analogous to Git’s internal
storage mechanism [6] consisting of hashed objects (blobs,
trees, and commits) and references, such as branches or tags,
which point to these objects and act as metadata.

To simplify the object-graph mapping and algorithms on
the in-memory graph, we introduced three restrictions for
the hashed layer. First, each node has exactly one label (ex-
cluding hidden labels used for technical purposes). Second,
outgoing relationships from a node with a given label have a
fixed type and exactly one property, e.g., Object nodes may
only have HAS_FIELD out-edges with a single name prop-
erty. Third, edge property values must be unique among
out-edges of a given node, e.g., a frame instance must not
have duplicate variable names.

Hashed Nodes Layer. The hashed nodes layer comprises
stack frames and values of five basic types.

Stack frame nodes, labeled Frame, are created only in the
savepoint and sampling collection modes. We model a stack
frame simply as a set of local variables, each having its name
stored in an outgoing relationship’s property and its value


https://neo4j.com/
https://code.visualstudio.com/docs/debugtest/debugging#_logpoints

RuntimeSave: A Graph Database of Runtime Values

:Method :CONTAINS :Note
signature: "run()V" text: "Bug #12"
:DECLARESA iLine :DESCRIBES

number: 25

:HAS_VARIABLE

:Class
name: "pkg.App"
name: “font"
:Frame
:HAS_VARIABLE
name: “fontFamily"
:HAS_FIELD v
name: “family"

:String < :Object
type: "pkg.Font"

value: "Arimo" ‘HAS FIELD
name: "styles" :HAS_FIELD
name: "size"
:Array ‘HAS_FIELD

type: "pkg.Style[]" name: "color"

:Primitive
‘HAS_ELEMENT value: 12
index: 1 type: "int" Null
‘HAS_ELEMENT :
index: O Legend py’z\)';?e?teyl'?/g\eule ‘RELATIONSHIP_TYPE

property: value

Figure 1. An instance of RuntimeSave’s graph model

stored as its target node. Stack frames coming from instance
methods include a special variable named “this”.

Objects are modeled as nodes labeled Object with their
fully qualified class name stored in the type property. Field
names appear as properties of outgoing relationships, and
their values as target nodes. Although strings are objects
too, they have a special status in the JVM and JDI. We thus
model them as String nodes, storing the value in a property
instead of as separate characters, which also improves per-
formance. An array is represented by an Array node with
elements stored as target nodes. Primitive values, such as int
or double, are modeled as Primitive nodes with a value and
type stored in two properties. Null values are represented
by a single shared Null node for the entire graph.

In addition to the properties displayed in Figure 1, every
hashed node has two more properties: hash, described in
Section 2.4, and idHash, explained in Section 2.5.

Metadata Layer. The metadata layer comprises nodes that
improve the ability to find the right value or stack frame node
in the graph. Metadata nodes always point to the hashed
nodes, not vice versa.

As shown in Figure 1, Class and Method nodes repre-
sent classes and their declared methods. A method can have
source code lines denoted as Line nodes if the line number
table is present in the class file. A line then maps to stack
frames, so we can easily find frames coming from a speci-
fied line and use them to re-execute the line using stored
variables, among other use cases. Note nodes are created
manually by developers to mark objects related to issues or
other relevant information, making them searchable later.

We envision many other kinds of metadata. For example,
to better reconstruct past executions, we could record process
identifiers, system times, JVM thread names, objects’ unique

VMIL ’25, October 12-18, 2025, Singapore, Singapore

IDs, and relative stack frame orders. For queries involving
inheritance reasoning, we could store type hierarchies.

2.3 Packing

After constructing the in-memory graph, selected nodes from
the hashed layer optionally pass through transformation al-
gorithms that we call packers. These simplify the graph struc-
ture for two main reasons. First, runtime data volume is high,
so we need to reduce the number of nodes and edges before
storage. Second, packed graphs can be more comprehensible
for humans and easier to query. Packing is reversible, so a
graph can be unpacked without information loss.

One volume-reducing example is the Sparse Array Packer.
In practice, many arrays contain mostly default values, such
as 0 or null. We can replace the Array node with a SparseAr-
ray node, delete all the target nodes with default values, and
store the array length explicitly in the length property.

A comprehension-focused example is the Linked List Pack-
er. Java’s LinkedList is implemented using nodes linked to
previous and next items. While this low-level structure is suit-
able for certain analyses, we may prefer a more conceptual
view: as an ordered, indexed collection. The packer trans-
forms an Object of type LinkedList into a LinkedListNo-
de with indexed out-edges directly referencing elements. In-
cidentally, this also reduces node and edge counts. The idea
of comprehension-facilitating packers was inspired by the
Moldable Debugger [12] and IntelliJ’s Type Renderers, which
display runtime values in more abstract, domain-specific
ways. The key difference is that packers preserve enough im-
plementation details to make the transformation reversible.

Another volume-reducing packer is the Same Primitives
Packer. It leverages the fact that in JVM, primitive values
cannot be aliased — no two fields or array elements can refer
to the same primitive value. Before storing them in the data-
base, the packer merges all primitives with the same value
(e.g., all ints equal to 7) into a single node and redirects all
original edges to it. During the unpacking, we unambigu-
ously expand the merged node into multiple ones based on
the number of its in-edges.

The Primitive Array Packer stores all values of a primitive
array inside a single elements property of one Primitive-
Array node, thanks to Neo4;j’s homogeneous list type sup-
port. While this can make certain Cypher queries more chal-
lenging, it improves writing speed and space requirements.

Although we currently provide only four packers, the
mechanism is extensible. It is possible to add a custom packer
by implementing a simple four-method interface. Individual
packers can be enabled or disabled as necessary, and their
processing order is configurable.

2.4 Hashing

Packing partially reduces storage requirements, but the fun-
damental problem of duplication remains. Suppose we save



VMIL °25, October 12-18, 2025, Singapore, Singapore

an array containing two different complex objects, each con-
sisting of thousands of nodes and edges. Later, possibly after
restarting the program, we save an array with the same el-
ements, only swapped. Saving complete copies each time
would be unsustainable. We therefore need an algorithm to
identify which parts of the graph stored in the database corre-
spond to the parts being saved, allowing us to store only the
missing parts. This is known as the graph alignment problem,
for which no exact polynomial-time algorithm exists.
Content-addressable systems using Merkle trees, such as
Git, solve this problem elegantly and efficiently for trees [5].
Git is based on the premise that strong cryptographic hashing
algorithms do not produce hash collisions in practice. Each
file’s content (i.e., “blob”) is represented by its hash. A leaf
directory’s hash is computed from a sorted list of filenames
paired with their blobs’ hashes. This continues recursively: a
parent directory’s hash depends on the hashes of its children.
Duplication is thus avoided simply by computing hashes and
determining if they already exist in the repository.
RuntimeSave is also a content-addressable system but for
graphs. Compared to general cases, our object graphs have
specific characteristics: i) The graph being inserted into a
database is directed, connected, node- and edge-labeled, and
possibly cyclic. ii) Based on the restrictions we imposed
in Section 2.2, each node’s outgoing edges are unique and
lexicographically ordered (e.g., an object’s fields by name).
This enables deterministic traversal and makes our approach
practically feasible.
We have these requirements for our hashing algorithm:
i) A hash is computed for every node, not only the entire
graph. ii) We avoid encoding which node is a root because
we want to detect also partial (sub-object) matches. iii) A
hash represents the node’s label and properties, the ordered
property values of its outgoing edges, and — recursively —
the same for all reachable nodes. In effect, it captures the
full topology of the node’s reachable subgraph. iv) No hash
collisions occur in practice, so two nodes with the same hash
represent JVM objects equal by deep value-based equality.
Neglecting reference equality for now (see Section 2.5), our
scheme enables natural querying while achieving significant
deduplication. This is illustrated in Figure 2 with nodes’
hashes as uppercase letters, array indexes as numbered edges,
and fields as edges with lowercase letters. Two arrays, hashed
as A and G, both contain elements hashed B and C but in
swapped order. If A is stored in the database, adding G does
not duplicate nodes B to F. Only the node G and its direct out-
edges are added, as its targets with hashes B and C (and thus
their whole reachable subgraph) have already been stored.
Note that node A does not have knowledge of node G, and
vice versa. In the resulting merged graph, the DFS (depth-
first search) traversal from each node remains the same as in
the original graphs. As a result, Cypher queries using only
outgoing relationships remain natural and need not account
for deduplication.

Matus Sulir, Antonia Bertolino, and Guglielmo De Angelis

Figure 2. Hash-based deduplication example

General graph hashing algorithms are not well-suited to
our case because they often ignore edge order or can produce
the same hashes for non-isomorphic graphs. Therefore, we
devised our own algorithm, whose naive version is shown
in Algorithm 1. Procedure AssignHashes takes the set of all
nodes in a graph as input and assigns a hash to each node
independently of others. Unlike trees, graphs lack inherent
hierarchy; using a spanning tree would yield different re-
sults depending on the starting node. The associative array
orders, initialized on line 3, will map each node to its tra-
versal order. The hasher (line 4) is a stream-like object to
which we append unambiguous binary representations of
data via the < operator. In the end, it produces a hash (line
6). We use the SHA-224 function as it offers the shortest
resulting hash among the algorithms available in standard
Java distributions for which no collision has yet been found.

1 Procedure AssignHashes(nodes) is

2 foreach node in nodes do

3 orders «— empty Map

4 hasher <« empty SHA hasher

5 NodeHash(node, hasher)

6 node.hash «— hasher.produceHash()

7 Procedure NodeHash(node, orders, hasher) is

8 orders[node]| < orders.size

9 hasher <« node.label < node.props << START
10 foreach edge in node.outEdges do

11 hasher < edge.property

12 if edge.target in orders then

13 ‘ hasher < orders|[edge.target]

14 else NodeHash(edge.target, orders, hasher)

15 | hasher < END
Algorithm 1: A naive version of the graph hashing

In procedure NodeHash, we first assign a traversal order
to the given node (line 8). The node’s label and properties
are encoded into binary form and appended to the hasher
on line 9. A special marker START denotes the beginning of
the out-edge list to avoid ambiguity. We then iterate over the
node’s out-edges in their natural order (line 10). The property
value of each edge is hashed (line 11). If the target node has
already been visited, we encode it as its numeric traversal
order on line 13. Otherwise, we continue recursively in a
DFS manner (line 14).



RuntimeSave: A Graph Database of Runtime Values

Although the naive version has quadratic time complexity
in the total number of nodes and edges, alternatives exist.
We have implemented a variant that improves complexity
for tree-shaped subgraphs and provides a constant-factor
speedup by caching precomputed hashes for parts of data.
Due to space constraints, we refer the reader to our source
code, linked in Section 5.

2.5 ID-Hashing

Consider graph F in Figure 3, stored in a database. It contains
three nodes with the same hash, B, which are value-equal
but not reference-equal. Suppose only their hashes (B) were
stored — the indices B, to B3 appear solely for clarity. Now,
we want to insert graph G into the database. Starting from
the top, a node hashed D is not yet stored there, so we create
it. Since enough B-hashed nodes already exist in the database,
we aim to reuse them. However, we cannot arbitrarily match
B-hashed nodes from G with those from F. For instance,
connecting D’s edge 0 to F’s B; and D’s edge 1 to F’s B,
would produce a non-tree graph instead of a tree. To find
the correct attachment points, we would need to recursively
scan the outgoing edges of multiple B-hashed nodes to find
the matching graph topology. Such scanning would defeat
the purpose of having hashes in the first place.

Figure 3. Deduplication considering reference equality

To solve this, we assign each node a special property called
ID-hash, which encodes the topology of its reachable sub-
graph, considering not only value equality but also reference
equality. First, we traverse a graph using DFS and assign each
node its copy number computed as the number of nodes with
the same hash encountered so far. Then, for each node V in
the graph independently, we construct a concatenation of tu-
ples (hashy1, copymn), ..., (hashpn, copymn), where My...M,
are nodes reachable from V in DFS order, including V itself.
The ID-hash of V is the SHA hash of this concatenation’s
binary representation.

Consider graph F in Figure 3. We mark all nodes with
copy numbers shown as indices. After assigning ID-hashes,
B, and B, encode two facts: they are distinct copies of nodes
hashed B, and they both reference the same node C; in terms
of reference equality. In graph G, B; encode its reference to
C;. Thus, the pair B1-C; from G can be successfully reused
and shared in the resulting graph H. However, there is no
pair B,—C; in F, so this branch will be created in the database
and not reused in H.

Using DFS traversal order to assign copy numbers is only
a heuristic: if we changed B, to B3 in graph G, the branch

VMIL ’25, October 12-18, 2025, Singapore, Singapore

could be reused since it already exists in graph F. Instead of
traversal order, we could use JDI's unique object IDs or Java
objects’ identity hash codes. As these numbers are essen-
tially random and reset between program runs, this would
maximize reuse within a single program run but prevent
reuse across multiple executions.

2.6 Saving Hashed Graphs to Database

After assigning each node its ID-hash, we save the graph into
the Neo4j database, trying to minimize the query count and
the amount of data sent. First, we detect strongly connected
components (SCCs) in the graph being inserted. An SCC is
a maximal subgraph in which each node is reachable from
every other node. We construct the graph’s condensation:
a directed acyclic graph (DAG) created by contracting each
SCC into a single node. To remove redundant edges, we com-
pute the transitive reduction of the DAG, which is a minimal
graph preserving the reachability relation between all node
pairs. This results in a single-rooted acyclic graph express-
ing dependencies. Assuming no unfinished transactions, if
a node with a given ID-hash exists in the database, then all
nodes in its SCC and all reachable SCCs are present too.

The writing process leverages the ID-hash as a unique
constraint — duplicate ID-hashes are forbidden. We start by
sending a query trying to insert one node from the root
SCC. Neo4j’s reply indicates whether the node was really
created or if a node with the same ID-hash already existed.
If it existed, this means all its reachable nodes are stored in
the database too, so we stop. If the node was created, we
write the remaining nodes of that SCC and proceed to its
target SCCs. We attempt to write one node from each target
SCC. Neo4j returns a list of booleans indicating which nodes
were created and which were already present. We stop the
traversal of existing SCCs, write the remaining nodes of the
newly created ones, and recursively continue this process
until reaching terminal SCCs.

3 Preliminary Evaluation

For manual object selection and savepoints, performance
is not critical unless handling large objects or placing save-
points at hotspot lines. We will focus our evaluation on the
sampling mode, particularly the all-lines collection mode
(n =t = 1). Running selected Apache Commons Lang unit
tests, we observed a significant slowdown, about 30-40x.
However, simply suspending the program with a breakpoint
at every line, without collecting any data, caused roughly
a 10x slowdown. We plan to replace JDI-based collection
with bytecode instrumentation and a native JVM TI (Tool
Interface) agent, expecting a radical speedup.

Thus, we decided to evaluate only the effect of pack-
ing and hashing, excluding JDI. We wrote a simple bench-
mark program that downloads an XML file, parses it using
Java’s DOM (Document Object Model) AP, adds elements



VMIL °25, October 12-18, 2025, Singapore, Singapore

Table 1. Comparison of database writing approaches

Approach Nodes Edges Time Database size
plain 26,304 41,306 2,343 ms 8,904 kB
packed 4,221 8,076 558 ms 2,728 kB
hashed 2,125 11,261 738 ms 2,824 kB
pack & hash 504 1,760 218 ms 1,520 kB

to it, and transforms it back to a string. After every line,
all variables in scope were read using reflection and trans-
formed to our in-memory graph representation, with a Frame
node as a root. This resulting list of graphs was then writ-
ten into the Neo4j database in four different ways: a plain
approach without any processing, a packed-only graph, a
hashed-only graph, and full processing (packing and hash-
ing). We counted nodes and edges created in the database
and measured the median processing and writing time, us-
ing 20 warmup rounds and 20 measurement iterations. The
database was erased after each round. We also measured
the size of the data/databases/runtimesave directory in
Neo4j’s home path. Based on the results in Table 1, packing
and hashing significantly improved time and space require-
ments. Combining packing and hashing reduced the node
count 52x, edge count 23x, time 11x, and database size 6x.

4 Applications

Runtime values stored by RuntimeSave could be applied in
many ways; we highlight only a few.

Querying and Visualization. Using the Neo4j graph
database gives us access to its querying capabilities. For
example, finding all objects with self-referencing fields is
as simple as: MATCH (n:Object)->(n) RETURN n. On a
database with about 100,000 nodes, such a query tends to
complete in 20-30 ms, depending on the hardware.

Standard graph visualizations of runtime data aid compre-
hension. For instance, inspecting a Java DOM object graph,
we promptly found out that parsed XML nodes are stored in
a large array, not in a tree structure as we expected.

Starting a Program at Any Line. To demonstrate Run-
timeSave’s potential, we developed an IDE extension that
lets developers use any line (starting a Java statement) as
an entry point. The method containing this line is executed
using a combination of JDI and reflection, while bytecode
instrumentation skips the execution of all earlier lines. For
each variable in scope, we try to find a suitable value in the
RuntimeSave’s database. The currently implemented logic
is simple, but we envision a graphical user interface where
developers select objects from a list ordered by heuristics
utilizing our metadata layer. Finally, the values are loaded
from the database and assigned to the variables.

Other Possible Applications. We could relatively easily
implement a runtime diff tool that compares multiple stored

Matus Sulir, Antonia Bertolino, and Guglielmo De Angelis

objects, possibly from separate executions, field by field. To
enhance program comprehension, an IDE could show ex-
pandable lists of sample variable values collected at each
line. An API exploration tool would enable the execution of
various methods on objects from the database, helping devel-
opers understand their behavior. Stored objects could also
serve as actual or expected values in unit tests, especially
when constructing them is difficult, such as in legacy soft-
ware or with hard-to-reproduce errors. The database could
be shared as a team knowledge base too. Finally, we envision
an analogy to software repository mining, analyzing runtime
information instead of static source code.

5 Future Work

RuntimeSave is implemented as an Intelli] IDEA plugin, avail-
able at https://github.com/sulir/runtimesave. We have al-
ready implemented savepoints and sampling data collectors,
four metadata node types, four packers, hashing with tree
recognition and caching, ID-hashing, and database writing,.
Beyond the possible applications discussed earlier, we would
like to extend RuntimeSave in several ways.

In the sampling data collector, we plan to replace JDI with
bytecode instrumentation, a native C++ JVM TI Agent, and
a custom binary serialization format to transfer the values
from a debugged program to the IDE using shared memory.
We expect a dramatic speedup from this. We would also like
to further improve the hashing algorithm’s efficiency, apply
similar ideas to ID-hashing, and improve database access
patterns. The effect of moving selected parts of RuntimeSave
to high-speed cloud deployments could be explored too. If
we achieved sufficient performance under certain configura-
tions, data collection could potentially extend to simulated
production environments.

In addition to the manual placement of savepoints by de-
velopers, IDEs could automatically suggest their locations
and conditions. The current storage mechanism is not opti-
mized for updating existing values, which is another future
research direction. Data deletion could be handled similarly
to garbage collection. Incompatibility of the saved objects
with newer source code versions, although being a sepa-
rate research problem, could also be explored. The scope of
collected data in the hashed layer could be extended with
non-final static variables. The metadata layer could be en-
riched with additional node types described in the paper.

RuntimeSave could also be ported to other language run-
times, such as Python. For its core features, it requires the
ability to suspend and resume a debugged program, list vari-
ables in scope, and traverse the object graph.

Acknowledgments

This work was supported by the Slovak Research and Devel-
opment Agency under the Contract no. APVV-23-0408.


https://github.com/sulir/runtimesave

RuntimeSave: A Graph Database of Runtime Values

References

(1]

(7]
(8]

(10]

(11]

Mohammad R. Azadmanesh and Matthias Hauswirth. 2015. SQL for
Deep Dynamic Analysis?. In Proceedings of the 13th International Work-
shop on Dynamic Analysis (WODA 2015). ACM, New York, NY, USA,
2-7. doi:10.1145/2823363.2823365

Francois Bancilhon. 1996. Object databases. Comput. Surveys 28, 1
(March 1996), 137-140. doi:10.1145/234313.234373

Earl T. Barr and Mark Marron. 2014. Tardis: Affordable Time-Travel
Debugging in Managed Runtimes. ACM SIGPLAN Notices 49, 10 (Oct.
2014), 67-82. doi:10.1145/2714064.2660209

Jonathan Bell, Nikhil Sarda, and Gail Kaiser. 2013. Chronicler: Light-
weight Recording to Reproduce Field Failures. In Proceedings of the
2013 International Conference on Software Engineering (ICSE °13). IEEE,
Piscataway, NJ, USA, 362-371. doi:10.1109/ICSE.2013.6606582

Scott Chacon and Ben Straub. 2014. Git Internals - Git Objects. In Pro
Git (2nd ed.). Apress, Berkeley, CA, Chapter 10.2, 358-365. https://git-
scm.com/book/en/v2/Git-Internals-Git-Objects

Scott Chacon and Ben Straub. 2014. Git Internals — Git References.
In Pro Git (2nd ed.). Apress, Berkeley, CA, Chapter 10.3, 365-368.
https://git-scm.com/book/en/v2/Git-Internals-Git-References
Jonathan Edwards. 2004. Example Centric Programming. ACM SIG-
PLAN Notices 39, 12 (Dec. 2004), 84-91. doi:10.1145/1052883.1052894
Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. 2013. Exposi-
tor: Scriptable Time-travel Debugging with First-class Traces. In Pro-
ceedings of the 2013 International Conference on Software Engineering
(ICSE ’13). IEEE, Piscataway, NJ, USA, 352-361. doi:10.1109/ICSE.2013.
6606581

Eva Krebs, Patrick Rein, and Robert Hirschfeld. 2022. Example Mining:
Assisting Example Creation to Enhance Code Comprehension. In Pro-
ceedings of the Programming Experience 2022 (PX/22) Workshop. ACM,
New York, NY, USA, 60-66. doi:10.1145/3532512.3535226

Charles Lamb, Gordon Landis, Jack Orenstein, and Dan Weinreb. 1991.
The ObjectStore Database System. Commun. ACM 34, 10 (Oct. 1991),
50-63. doi:10.1145/125223.125244

Fabio Niephaus, Patrick Rein, Jakob Edding, Jonas Hering, Bastian
Konig, Kolya Opahle, Nico Scordialo, and Robert Hirschfeld. 2020.

[12]

[13]

[14]

[15]

[16]

[17]

VMIL ’25, October 12-18, 2025, Singapore, Singapore

Example-Based Live Programming for Everyone: Building Language-
Agnostic Tools for Live Programming with LSP and GraalVM. In Pro-
ceedings of the 2020 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software
(Onward! 2020). Association for Computing Machinery, New York, NY,
USA, 1-17. doi:10.1145/3426428.3426919

Oscar Marius Nierstrasz and Tudor Girba. 2024. Moldable Devel-
opment Patterns. In Proceedings of the 29th European Conference on
Pattern Languages of Programs, People, and Practices (EuroPLoP °24).
Association for Computing Machinery, New York, NY, USA, Article
18, 14 pages. doi:10.1145/3698322.3698327

Dileep Kumar Pattipati, Rupesh Nasre, and Sreenivasa Kumar Puli-
gundla. 2022. BOLD: An Ontology-Based Log Debugger for C Pro-
grams. Automated Software Engineering 29, 1 (May 2022), 43 pages.
doi:10.1007/s10515-021-00308-8

David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert
Hirschfeld. 2019. Babylonian-style Programming: Design and Imple-
mentation of an Integration of Live Examples Into General-purpose
Source Code. The Art, Science, and Engineering of Programming 3, 3
(2019), 9. doi:10.22152/programming-journal.org/2019/3/9

Patrick Rein, Stefan Ramson, Jens Lincke, Robert Hirschfeld, and
Tobias Pape. 2018. Exploratory and Live, Programming and Cod-
ing: A Literature Study Comparing Perspectives on Liveness. The
Art, Science, and Engineering of Programming 3, 1 (2018), 1:1-1:33.

doi:10.22152/programming-journal.org/2019/3/1
Matus Sulir and Jaroslav Porubén. 2018. Augmenting Source Code

Lines with Sample Variable Values. In Proceedings of the 26th In-
ternational Conference on Program Comprehension (ICPC ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 344-347.
doi:10.1145/3196321.3196364

Aditya Thimmaiah, Leonidas Lampropoulos, Christopher Rossbach,
and Milos Gligoric. 2024. Object Graph Programming. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering
(ICSE °24). Association for Computing Machinery, New York, NY, USA,
Article 20, 13 pages. doi:10.1145/3597503.3623319


https://doi.org/10.1145/2823363.2823365
https://doi.org/10.1145/234313.234373
https://doi.org/10.1145/2714064.2660209
https://doi.org/10.1109/ICSE.2013.6606582
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-Objects
https://git-scm.com/book/en/v2/Git-Internals-Git-References
https://doi.org/10.1145/1052883.1052894
https://doi.org/10.1109/ICSE.2013.6606581
https://doi.org/10.1109/ICSE.2013.6606581
https://doi.org/10.1145/3532512.3535226
https://doi.org/10.1145/125223.125244
https://doi.org/10.1145/3426428.3426919
https://doi.org/10.1145/3698322.3698327
https://doi.org/10.1007/s10515-021-00308-8
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/1
https://doi.org/10.1145/3196321.3196364
https://doi.org/10.1145/3597503.3623319

	Abstract
	1 Introduction
	2 Storage Mechanism
	2.1 Data Collection
	2.2 Graph Model
	2.3 Packing
	2.4 Hashing
	2.5 ID-Hashing
	2.6 Saving Hashed Graphs to Database

	3 Preliminary Evaluation
	4 Applications
	5 Future Work
	Acknowledgments
	References

