References
Abelson, H. (1986). Lecture 1A: Overview and introduction to lisp
[lecture transcript]. MIT OpenCourseWare 6.001 Structure and
Interpretation of Computer Programs. https://ocw.mit.edu/courses/6-001-structure-and-interpretation-of-computer-programs-spring-2005/resources/1a-overview-and-introduction-to-lisp/
Arvanitou, E.-M., Ampatzoglou, A., Chatzigeorgiou, A., & Carver, J.
C. (2021). Software engineering practices for scientific software
development: A systematic mapping study. Journal of Systems and
Software, 172, 915–929. https://doi.org/10.1016/j.jss.2020.110848
Begel, A., & Zimmermann, T. (2014). Analyze this! 145 questions for
data scientists in software engineering. Proceedings of the 36th
International Conference on Software Engineering, 12–23. https://doi.org/10.1145/2568225.2568233
Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the
dichotomy of debugging behavior among programmers. Proceedings of
the 40th International Conference on Software Engineering, 572–583.
https://doi.org/10.1145/3180155.3180175
Boehm, B. W., Elwell, J. F., Pyster, A. B., Stuckle, E. D., &
Williams, R. D. (1982). The TRW software productivity system.
Proceedings of the 6th International Conference on Software
Engineering, 148–156. https://dl.acm.org/doi/10.5555/800254.807757
Burns, R. B. (2000). Introduction to research methods (4th
ed.). SAGE Publications.
Carrera-Rivera, A., Ochoa, W., Larrinaga, F., & Lasa, G. (2022).
How-to conduct a systematic literature review: A quick guide for
computer science research. MethodsX, 9, 101895. https://doi.org/10.1016/j.mex.2022.101895
Carvalho, L., Degiovanni, R., Cordy, M., Aguirre, N., Le Traon, Y.,
& Papadakis, M. (2024). SpecBCFuzz: Fuzzing LTL solvers with
boundary conditions. Proceedings of the IEEE/ACM 46th International
Conference on Software Engineering. https://doi.org/10.1145/3597503.3639087
Choudhuri, R., Liu, D., Steinmacher, I., Gerosa, M., & Sarma, A.
(2024). How far are we? The triumphs and trials of generative AI in
learning software engineering. Proceedings of the IEEE/ACM 46th
International Conference on Software Engineering. https://doi.org/10.1145/3597503.3639201
Creswell, J. W., & Creswell, J. D. (2018). Research design:
Qualitative, quantitative, and mixed methods approaches (5th ed.).
Sage.
Denning, P. J. (2005). Is computer science science? Commun.
ACM, 48(4), 27–31. https://doi.org/10.1145/1053291.1053309
Easterbrook, S., Singer, J., Storey, M.-A., & Damian, D. (2008).
Selecting empirical methods for software engineering research. In F.
Shull, J. Singer, & D. I. K. Sjøberg (Eds.), Guide to advanced
empirical software engineering (pp. 285–311). Springer London. https://doi.org/10.1007/978-1-84800-044-5_11
Futatsugi, K., & Okada, K. (1982). A hierarchical structuring method
for functional software systems. Proceedings of the 6th
International Conference on Software Engineering, 393–402. https://dl.acm.org/doi/10.5555/800254.807782
Hall, T., Beecham, S., Bowes, D., Gray, D., & Counsell, S. (2012). A
systematic literature review on fault prediction performance in software
engineering. IEEE Transactions on Software Engineering,
38(6), 1276–1304. https://doi.org/10.1109/TSE.2011.103
Hoda, R., Noble, J., & Marshall, S. (2013). Self-organizing roles on
agile software development teams. IEEE Transactions on Software
Engineering, 39(3), 422–444. https://doi.org/10.1109/TSE.2012.30
Huang, Y., Wang, J., Liu, Z., Wang, Y., Wang, S., Chen, C., Hu, Y.,
& Wang, Q. (2024). CrashTranslator: Automatically reproducing mobile
application crashes directly from stack trace. Proceedings of the
IEEE/ACM 46th International Conference on Software Engineering. https://doi.org/10.1145/3597503.3623298
Huijgens, H., Rastogi, A., Mulders, E., Gousios, G., & Deursen, A.
van. (2020). Questions for data scientists in software engineering: A
replication. Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, 568–579. https://doi.org/10.1145/3368089.3409717
Inal, Y., Clemmensen, T., Rajanen, D., Iivari, N., Rizvanoglu, K., &
Sivaji, A. (2020). Positive developments but challenges still ahead: A
survey study on UX professionals’ work practices. J. Usability
Studies, 15(4), 210–246.
Inayat, I., Salim, S. S., Marczak, S., Daneva, M., & Shamshirband,
S. (2015). A systematic literature review on agile requirements
engineering practices and challenges. Computers in Human
Behavior, 51, 915–929. https://doi.org/10.1016/j.chb.2014.10.046
Kampenes, V. B., Dybå, T., Hannay, J. E., & Sjøberg, D. I. K.
(2007). A systematic review of effect size in software engineering
experiments. Information and Software Technology,
49(11), 1073–1086. https://doi.org/10.1016/j.infsof.2007.02.015
Keshav, S. (2007). How to read a paper. SIGCOMM Comput. Commun.
Rev., 37(3), 83–84. https://doi.org/10.1145/1273445.1273458
Kitchenham, B. A., Dyba, T., & Jorgensen, M. (2004). Evidence-based
software engineering. Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on, 273–281. https://doi.org/10.1109/ICSE.2004.1317449
Kitchenham, B., & Charters, S. (2007). Guidelines for performing
systematic literature reviews in software engineering (Technical
Report EBSE-2007-01). Keele University; Durham University Joint Report.
https://legacyfileshare.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
Lawrance, J., Bogart, C., Burnett, M., Bellamy, R., Rector, K., &
Fleming, S. D. (2013). How programmers debug, revisited: An information
foraging theory perspective. IEEE Transactions on Software
Engineering, 39(2), 197–215. https://doi.org/10.1109/TSE.2010.111
Miao, X., Wu, Y., Chen, L., Gao, Y., & Yin, J. (2023). An
experimental survey of missing data imputation algorithms. IEEE
Transactions on Knowledge and Data Engineering, 35(7),
6630–6650. https://doi.org/10.1109/TKDE.2022.3186498
Nakamoto, Y., Iwamoto, T., Hori, M., Hagihara, K., & Tokura, N.
(1982). An editor for documentation in π-system to support software
development and maintenance. Proceedings of the 6th International
Conference on Software Engineering, 330–339. https://dl.acm.org/doi/10.5555/800254.807775
OECD. (2015). Frascati manual 2015: Guidelines for collecting and
reporting data on research and experimental development (p. 398).
OECD Publishing. https://doi.org/10.1787/9789264239012-en
Rothlisberger, D., Harry, M., Binder, W., Moret, P., Ansaloni, D.,
Villazon, A., & Nierstrasz, O. (2012). Exploiting dynamic
information in IDEs improves speed and correctness of software
maintenance tasks. IEEE Transactions on Software Engineering,
38(3), 579–591. https://doi.org/10.1109/TSE.2011.42
Shahin, M., Liang, P., & Babar, M. A. (2014). A systematic review of
software architecture visualization techniques. Journal of Systems
and Software, 94(Supplement C), 161–185. https://doi.org/10.1016/j.jss.2014.03.071
Shreeve, B., Gralha, C., Rashid, A., Araújo, J., & Goulão, M.
(2023). Making sense of the unknown: How managers make cyber security
decisions. ACM Trans. Softw. Eng. Methodol., 32(4). https://doi.org/10.1145/3548682
Steimann, F. (2018). Fatal abstraction. Proceedings of the 2018 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, 125–130. https://doi.org/10.1145/3276954.3276966
Stol, K.-J., & Fitzgerald, B. (2018). The ABC of software
engineering research. ACM Trans. Softw. Eng. Methodol.,
27(3). https://doi.org/10.1145/3241743
Wobbrock, J. O., & Kientz, J. A. (2016). Research contributions in
human-computer interaction. Interactions, 23(3),
38–44. https://doi.org/10.1145/2907069
Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure
for selecting a research design in empirical software engineering.
Empirical Softw. Engg., 20(6), 1427–1455. https://doi.org/10.1007/s10664-014-9319-7
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., &
Wesslén, A. (2024). Systematic literature studies. In
Experimentation in software engineering (2nd ed., pp. 51–63).
Springer. https://doi.org/10.1007/978-3-662-69306-3_4
Zeller, A., & Lütkehaus, D. (1996). DDD—a free graphical front-end
for UNIX debuggers. SIGPLAN Not., 31(1), 22–27. https://doi.org/10.1145/249094.249108